Математическая модель трансформации плоского вихревого течения в пространственное

22 марта 2017

Исполнитель и докладчик:

Соискатель кафедры Летательных Аппаратов

Кривоногов А. А.

Научный руководитель:

Д.т.н. профессор кафедры Летательных Аппаратов

Карташев А. Л.

ЮУрГУ, Аэрокосмический факультет

Принцип работы Вихревого расходомера

Основные рабочие параметры

Sh

Число Струхаля — критерий подобия колебательных течений жидкостей и газов

Re

Число Рейнольдса характеризует параметры потока

К_F Коэффициент характеризует зависимость числа импульсов от Измеренного расхода

Расчет параметров вихревого расходомера и определение его оптимальных геометрических, и рабочих характеристик представляет собой одну из важнейших задач, решаемых при проектировании расходомерного устройства 3

Проблема моделирования

Основная цель моделирования – определение оптимальной формы проточной части в соответствии с оптимизационными критериями.

Основная проблема при моделировании – БОЛЬШИЕ ВРЕМЕННЫЕ ЗАТРАТЫ

Пути решения:

- Упрощение конечно элементной модели
- Использование алгоритмов ускоряющих процесс оптимизации
- Сокращение времени моделирования за счет применения новых алгоритмов обработки периодического сигнала

Описание численной модели

Проточная часть Rosemount 8600 без чувствительного элемента

Плоская и трехмерная КЭ модели

Описание расчетной модели в ANSYS CFX

- Шаг по времени задавался по числу Куранта =1
- Режим нестационарный.
- Рабочая среда вода, воздух (температура 25°С, давление 1 атм).
- Модель турбулентности k-e, модель теплопередачи изотермическая
- Профиль скорости описывается при помощи логарифмической функции от радиуса для 3D и от оси для плоского :

Вычислительный алгоритм связывающий плоскую и трехмерную математические модели

Существо вычислительного алгоритма заключается в следующем:

Даны значения временного ряда *P(t)*, имеющего периодические составляющие, в равноотстоящих узлах $t_1...t_n$. Данный ряд описывает изменение статического давления в точке мониторинга, ряд рассматривается, начиная с некоторого момента времени расчета, после завершения переходного процесса от начальных условий расчета и установления периодических колебаний в точках мониторинга.

Далее выполняется аппроксимация временного ряда *P(t)* непрерывной функцией *p(t)* вида:

$$p(t) = A_0 + \sum_{i=1}^{k} A_i \cos(2\pi f_i t + \varphi_i)$$

Где A_0 – постоянная составляющая сигнала; A_i , f_i , φ_i – амплитуда, частота и фаза і – ой гармоники, k – число гармонических составляющих.

Аппроксимация проводится в 2 этапа

Вычислительный алгоритм связывающий плоскую и трехмерную математические модели

Первый Этап

Ограничивается число гармоник к, отбрасываются гармонические составляющие, амплитуда которых не превышает заданного порога от максимальной амплитуды имеющихся гармоник.

- - 3d **--** 2d

Спектр пульсаций давления вихрей в точке

Вычислительный алгоритм связывающий плоскую

и трехмерную математические модели

Второй этап

При восстановлении по оставшимся гармоникам сигнал отличается от исходного, так как рассматривается не полный диапазон

Результат восстановления сигнала по двум гармоникам после БПФ

Коэффициенты A_i, f_i, φ_i принимаются за параметры регрессии и вычисляются методом наименьших квадратов. Будем считать, что p(t) построена при условии наилучшего квадратичного приближения, для чего найдем минимум функции:

$$\sum_{j=1}^{n} (P(t_j) - p(t_j, A_i, f_i, \varphi_i))^2 \to \min_{A_i, f_i, \varphi_i}$$

Вычислительный алгоритм связывающий плоскую и трехмерную математические модели

Задача минимизации решается методом Ньютона, с использованием значений A_i , f_i , φ_i , полученных методом БПФ на первом этапе работы математической модели в качестве начального приближения.

В результате работы математической модели определяем значения амплитуды, частоты и фазы зависимости (сигнала) давления от времени $(A_i, f_i, \varphi_i)_{2D}$, полученные в результате 2D моделирования.

Результат после обработки методом минимизации Ньютона

Вычислительный алгоритм связывающий плоскую

и трехмерную математические модели

Третий этап. Переход от величин $(A_i, f_i, \varphi_i)_{2D}$, полученных в результате 2D моделирования, к величинам $(A_i, f_i, \varphi_i)_{3D}$, соответствующим «эквивалентному» сигналу, моделирующему сигнал, получающийся в результате 3D моделирования.

Четвертый этап. Вычисление расхода по значениям частоты либо полное восстановление эквивалентного сигнала по формуле.

Пятый этап. Вывод результатов, полученных по математической модели, передача их в математическую модель оптимизации проточной части вихревого расходомера.

Определение функциональных зависимостей и коэффициентов математической модели

Переход от величин (A_i , f_i , φ_i)_{2D}, полученных в результате 2D моделирования, к величинам (A_i , f_i , φ_i)_{3D}, соответствующим «эквивалентному» сигналу, производится с помощью функциональных зависимостей и коэффициентов математической модели, связывающей 3D и 2D модели проточного тракта.

$$K_{f} = \frac{f_{3D}}{f_{2D}}; K_{A} = \frac{f_{3D}}{f_{2D}}; K_{\varphi} = \frac{f_{3D}}{f_{2D}}$$

Зависимость частоты вихреобразования

Определение функциональных зависимостей и коэффициентов математической модели

Зависимость фазы вихреобразования

Выводы

Благодаря использованию метода трансформации возможно, с высокой точностью восстановить частоту из двумерного сигнала в эквивалентный трехмерный при помощи линейной функциональной зависимости. Так как частота является определяющим параметром при измерении расхода, то это является достаточным условием для применимости данного алгоритма при оптимизации.

