Institute of Theoretical and Mathematical Physics

Russian Federal Nuclear Center -

VNIEF

Об аппроксимационной вязкости разностных схем и расчеты течений вязкой жидкости

On Approximation Viscosity of Difference Scheme and Computations of the Flows of Viscous Liquid

Янилкин Ю.В., Топорова О.О., Стадник А.Л.

План презентации

- В работе представлены исходные уравнения для моделирования вязких газодинамических течений и этапы их аппроксимации в коде ЭГАК.
- Приведена теоретическая оценка аппроксимационной (схемной) вязкости разностной схемы методики.
- Представлены результаты расчетов по исследованию влияния схемной вязкости сравнительно с молекулярной вязкостью.

Исходные уравнения

$$\begin{split} &\frac{d\mathbf{K}}{dt} + \int_{S} \rho \mathbf{u} \left(\mathbf{u} - \mathbf{u}^{*} \right) d\mathbf{S} = \int_{V} divTdV, \\ &\frac{dM_{\xi}}{dt} + \int_{S_{\xi}} \rho_{\xi} \left(\mathbf{u}_{\xi} - \mathbf{u}^{*} \right) d\mathbf{S} = 0, \\ &\frac{dE_{\xi}}{dt} + \int_{S_{\xi}} \rho_{\xi} e_{\xi} \left(\mathbf{u}_{\xi} - \mathbf{u}^{*} \right) d\mathbf{S} = \int_{V_{\xi}} Sp(T_{\xi}D_{\xi}) dV, \\ &P_{\xi} = P_{\xi}(\rho_{\xi}, e_{\xi}), \end{split}$$

$$K_{x} = \int_{V} \rho u_{x} dV \qquad K_{y} = \int_{V} \rho u_{y} dV \qquad K_{z} = \int_{V} \rho u_{z} dV \qquad M = \int_{V} \rho dV \qquad E = \int_{V} \rho e dV$$

Аппроксимация этих уравнений производится в два этапа, на первом решаются уравнения в лагранжевых переменных, на втором - уравнение адвекции. Аппроксимационную (схемную) вязкость разностной схемы можно определить из первого дифференциального приближения уравнения движения, раскладывая разностные уравнения в ряд Тейлора.

Мы хотим сравнить схемную вязкость с молекулярной, поэтому предполагается, что при аппроксимации остаточные члены от членов с молекулярной вязкостью малы.

Аппроксимация на лагранжевом этапе

$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = -\frac{1}{\rho}\nabla\cdot\mathbf{T} \qquad (1)$	u(u _x , u _y) – скорость (определена в узлах сетки T – тензор вязких напряжений
$T_{ij} \!= S_{ij} \!+ \!\delta_{ij} p$	S – девиатор тензора вязких напряжений Р - давление
В уравнении (1) р→g=р-	-q, q – искусственная вязкость для УВ.
$\mathbf{r}^{n+1/2} = \mathbf{r}^n + \tau \cdot \mathbf{u}^n,$	$\nabla^{n+1/2} = \mathbf{V}(\mathbf{r}^{n+1/2}), \qquad \nabla \cdot \mathbf{u}^n = \frac{\left(\mathbf{V}^{n+1/2} - \mathbf{V}^n\right)}{\tau \cdot \mathbf{V}^n}$
$p^{n} = P(\rho^{n}, e^{n}), \qquad p^{n+1/2} = p^{n} - p^{n}$	$\underline{\chi \cdot \rho^{n} \cdot (c^{n})^{2} \cdot \tau \cdot \nabla \cdot \mathbf{u}^{n}} \qquad g^{n+1/2} = p^{n+1/2} + \underline{q}^{n}$
$M_{i,j} = 0.25 \cdot \sum_{\xi} (M_{\xi,i-1/2,j-1/2} + M_{\xi,i-1/2,j-1/2})$	$_{\xi,i-1/2,j-1/2} + M_{\xi,i+1/2,j-1/2} + M_{\xi,i+1/2,j+1/2} \Big)$
$\mathbf{u}_{i,j}^{n+1} = \mathbf{u}_{i,j}^{n} - \frac{\tau}{M_{i,j}} \cdot \left(\nabla g^{n+1/2} + \nabla \cdot \mathbf{S}^{n}\right)_{i}$, $\tau = \Delta t - временной шаг$

Для лагранжева этапа схемная вязкость определяется остаточными членами от подчеркнутых членов уравнений, то есть от искусственной вязкости и предвычисленного давления.

Схемная вязкость на лагранжевом этапе

Спрогнозированное давление Р вычисляется по формуле

$$p^{n+1/2} = p^n - \tau \chi \left(c^n \right)^2 \rho^n \left(\nabla \cdot u^n \right), \quad \text{где} \quad \chi = 0.6.$$
⁽²⁾

Второй член в этом выражении после подстановки в уравнение движения дает остаточный член вязкостного вида, (назовем ее нестационарной вязкостью) в котором коэффициент вязкости имеет вид

$$v_{nst} = 0.6c^2 \tau \quad \rightarrow \quad \eta_{nst} = 0.6\rho c^2 \tau \tag{3}$$

Рассмотрим искусственную вязкость для УВ.

$$\begin{cases} q^{n} = C_{1} \cdot \rho^{n} \left(h^{n} \nabla \cdot \mathbf{u}^{n} \right)^{2} + C_{0} \cdot \rho^{n} \cdot \mathbf{c} \cdot h^{n} \nabla \cdot \mathbf{u}^{n} & \text{если } \nabla \cdot \mathbf{u}^{n} < 0 \\ q^{n} = 0 & \nabla \cdot \mathbf{u}^{n} \ge 0 \end{cases}$$
(4)

$$C_1 = 1, C_0 = 0.2$$

Квадратичный член искусственной вязкости μ_{sw1} может быть оценен из того, что УВ размазывается на 4-5 ячеек.

Линейная вязкость может быть оценена в первом приближении по формуле

$$\mu_{sw2} \approx C_0 \rho ch \tag{5}$$

Схемная вязкость на эйлеровом этапе

Схемную вязкость на эйлеровом этапе получим, разложив разностное уравнение движения в ряд Тейлора.

$$\frac{\partial \rho u_x}{\partial t} + div(\rho u_x \vec{u}) = \frac{\partial}{\partial x} \left(Ah\rho u_x \frac{\partial u_x}{\partial x} \right) + \frac{\partial}{\partial y} \left(Ah\rho u_y \frac{\partial u_x}{\partial y} \right) + \frac{\partial}{\partial z} \left(Ah\rho u_z \frac{\partial u_x}{\partial z} \right) + \theta(h^2, \tau^2),$$

$$\frac{\partial \rho u_y}{\partial t} + div(\rho u_y \vec{u}) = \frac{\partial}{\partial x} \left(Ah\rho u_x \frac{\partial u_y}{\partial x} \right) + \frac{\partial}{\partial y} \left(Ah\rho u_y \frac{\partial u_y}{\partial y} \right) + \frac{\partial}{\partial z} \left(Ah\rho u_z \frac{\partial u_y}{\partial z} \right) + \theta(h^2, \tau^2),$$

$$\frac{\partial \rho u_z}{\partial t} + div(\rho u_z \vec{u}) = \frac{\partial}{\partial x} \left(Ah\rho u_x \frac{\partial u_z}{\partial x} \right) + \frac{\partial}{\partial y} \left(Ah\rho u_y \frac{\partial u_z}{\partial y} \right) + \frac{\partial}{\partial z} \left(Ah\rho u_z \frac{\partial u_z}{\partial z} \right) + \theta(h^2, \tau^2).$$

 $\sigma_{ik} = Ah\rho < u > \frac{\partial}{\partial x_k} u_i$ - эта формула аналогична выражению для компонент тензора вязких напряжений, входящих в уравнения Навье-Стокса.

При этом роль коэффициента вязкости здесь играет коэффициент стационарной схемной вязкости:

$$\mu_{st} = Ah\rho < u > \tag{6}$$

где А зависит от способа вычисления потока импульса, на ударной волне и в окрестности контактных границ А =1/2, в остальных случаях А=1/4.

Схемная вязкость

Таким образом, аппроксимационная вязкость методики в общем случае состоит из четырех частей:

искусственной (квадратичной μ_{sw1} и линейной $\mu_{sw2} \approx C_0 \rho ch$),

схемной (стационарной $\mu_{st} = Ah\rho < u > и$ нестационарной $\eta_{nst} = 0.6\rho c^2 \tau$).

При оценке схемных вязкостей в расчете далее используется предположение о том, что каждая из рассматриваемых вязкостей влияют на течение аддитивно.

Задача 1. Первая задача Стокса

Расчеты с нулевой схемной вязкостью

AB=1, AM=3, MD=3 На границах BC и AD - условие периодичности Параметры веществ: $\rho_1 = \rho_2 = 1$; $\gamma_1 = \gamma_2 = 5/3$; $P_1 = P_2 = 0.6$; $u_x = 0$, $u_y = \pm w$ w=0.5. 1) $\eta_{phys} = 0$ $\mu_{st} = Ah\rho < u_x >$ 2) $\eta_{phys} = 0.005$

8

Зависимость ширины зоны размазывания скачка скорости от времени выражается формулой Шлихтинга: $\Delta \approx 8 \sqrt{\eta t}$ (7)

Первая задача Стокса

Расчетная оценка схемной вязкости

Расчетная зависимость ширины зоны размазывания скорости от времени

Воспользовавшись формулой Шлихтинга:

коэффициент схемной вязкости

$$\Delta_{comp} \approx 8\sqrt{\mu_{comp}t}$$
$$\mu_{comp} \approx \left(\frac{\Delta_{comp}}{8\sqrt{t}}\right)^2$$

(8)

t	0.3	0.4	0.5	0.6	0.7	0.8
	0.0035	0.0035	0.0036	0.0037	0.0035	0.0035

Теоретическая оценка по формуле $\mu_{st} = Ah\rho < u > дает \mu_{st} = 0.0025$ ₉

Первая задача Стокса

Оценка влияния схемной вязкости

Коэффициенты схемной вязкости для расчетов на разных сетках

μ_{st}	h	0.005	0.01	0.02	0.04
		0.00125	0.0025	0.005	0.01

Коэффициент молекулярной вязкости

 $\eta = 0.005$

2. Задача о размытии фронта ударной волны Постановка задачи

Эксперимент: Johnson J.N., Barker L.M., 1969.

- скорость удара: *U*₀=0.4808 км/с;
- неподвижная сетка с h=0.002, 0.001, 0.0005;
- коэффициент молекулярной вязкости $\eta = 0.01;$
- hi = hs = hr = 1.223 см.

В опытах и расчетах снимались U(t) КГ «Аl – опорная пластина».

По этим зависимостям, как в опытах, так и в расчетах можно вычислить времена размытия УВ. Эта величина и является основным исследуемым параметром.

Задача о размытии фронта ударной волны

Технология численного исследования

В расчетах на размытие УВ кроме молекулярной вязкости влияют все четыре дополнительные вязкости:

- стационарная схемная вязкость,
- квадратичная искусственная вязкость, введенная для моделирования УВ,
- линейная искусственная вязкость, работающая на фронте и за фронтом УВ.
- линейная нестационарная вязкость в предвычисленном давлении.
- В предположении суперпозиции влияние некоторых из этих вязкостей можно оценить из расчетов.
- Квадратичная вязкость размазывает УВ на ~4 ячейки, что позволяет вычислить временной интервал размазывания для любой сетки при известной скорости УВ (Δt ~ h).
- Линейную вязкость можно оценить, включив ее в расчет и сравнивая результат с расчетом без нее на одной и той же сетке.
- Аналогично для молекулярной вязкости.

Таким образом, имея оценки для указанных вязкостей, мы можем из общей вязкости разностной схемы вычленить и схемную вязкость. В соответствии с этим, задачу можно исследовать сериями расчетов.

Задача о размытии фронта ударной волны Постановка расчетов

Номер расчета	Число ячеек	Величина шага времени т	Линейная вязкость	Физическая вязкость $\eta = 0.01$
1	n	0.00012	есть	есть
2	2n	0.00006	-	есть
3	4n	0.00003	-	есть
4	n	0.00012	есть	-
5	n	0.00012	есть	есть
6	2n	0.00006	есть	-
7	2n	0.00006	есть	есть
8	2n	0.00006	-	-
9	n	0.00006	есть	-

Данные, необходимые для оценок схемной вязкости: скорость звука с \approx 5.5, массовая скорость и \approx 0.25, скорость УВ D \approx 5.75, величина счетного шага τ приведена в таблице.

Задача о размытии фронта ударной волны Влияние молекулярной вязкости

Действие молекулярной вязкости можно оценить, сравнивая расчеты с молекулярной вязкостью и без нее.

Молекулярная вязкость в расчетах учитывается корректно

Задача о размытии фронта ударной волны Влияние линейной вязкости

Результаты расчетов без молекулярной вязкости на сетке 2n с линейной вязкостью и без нее в сравнении с экспериментальными данными.

Задача о размытии фронта ударной волны Расчеты на сходимость без линейной вязкости

Видно, что в расчетах имеется сходимость к эксперименту с уменьшением размеров ячеек, то есть с уменьшением квадратичной и схемной вязкостей.

Задача о размытии фронта ударной волны Сводная таблица

расчет	Δt_{pacyer}	Δt _{сумма}	Δt_{ϕ}	$\Delta t_{_{\rm KB}}$	$\Delta t_{_{\rm ЛИН}}$	$\Delta t_{_{\rm HC}}$	Δt_{c}
1 (n)	0.0166	0.0180	0.01	0.0014	0	0.0058	0.00068
2 (2n)	0.0130	0.0140	0.01	0.0007	0	0.0029	0.00034
3 (4n)	0.0114	0.0120	0.01	0.00035	0	0.00145	0.00017
4 (n)	0.0105	0.0118	0	0.0014	0.0039	0.0058	0.00068
5 (n)	0.0205	0.0218	0.01	0.0014	0.0039	0.0058	0.00068
6 (2n)	0.0059	0.0068	0	0.0007	0.0029	0.0029	0.00034
7 (2n)	0.0159	0.0168	0.01	0.0007	0.0029	0.0029	0.00034
8 (2n)	0.0030	0.0039	0	0.0007	0	0.0029	0.00034
9 (n)	0.0076	0.0089	0	0.0014	0.0039	0.0029	0.00068
Эксперимент	0.01	-	-	-	-	-	-

 $\Delta t_{pacчer}$ – расчетное значение, $\Delta t_{суммa}$ – суммарное значение за счет всех вязкостей, $\Delta t \phi$ - за счет физической вязкости, Δt кв- за счет квадратичной вязкости, Δt лин - за счет линейной вязкости, Δt нс - за счет нестационарной вязкости, Δt с - за счет стационарной вязкости

Заключение

Приведена теоретическая оценка аппроксимационной вязкости на основе рассмотрения первого дифференциального приближения разностной схемы.

Проведены расчеты, которые показали корректность использования теоретической оценки схемной вязкости в расчетах конкретных задач.

Это позволяет определять критические размеры ячеек, больше которых не имеет смысла использовать при проведении расчетов течений вязкой жидкости, так как в этом случае влияние схемной вязкости будет сравнимо с эффектами физической вязкости.