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Introduction(1)

> In the fields of science and engineering, a great many of
problems are a complex process with multiphysical coupling.
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Introduction(2)

» These multiphysical processes are usually described by high nonlinear par
tial differential equations; it is difficult to find the analytical solution.

» During the last three or four decades, numerical simulations of multiphysi
cal processes 1s playing increasingly important in scientific research or in
the analysis and design of engineering.

Detonations and Combustions Implosion problems

Explosion and shock waves initial and boundary value problems
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Introduction(3)

» Basic steps of computational simulation
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4. Computational Analysis 5. Visualization
Errors and uncertainties in simulation code predictions have many sources,

including the lack of knowledge of the underlying physics models, the variability
of the initial geometry and materials, and degree of variability in the physical

phenomenon itself. Errors and uncertainties may generate in each
25 simulation Process



Introduction(4)

» With the increasing reliance on simulation codes, it is
becoming critically important to determine how well
they predict actual physical phenomenon.

» Users and developers of computational simulations
codes today face a critical 1ssue: How should
confidence 1n modeling and simulation be critically
assessed?

» The verification, wvalidation and uncertainty
quantification (V&V&UQ) of  computational
simulations are the primary methods for building and
quantifying this confidence. Goal 1s to estimate and
minimize uncertainty in predictions.
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The Detonation Model(1) *

> The 2D Euler equations in non-conservative form

i_é-i-c l-k; a=0 Mass equation (1)
cr
t’; “ +C Y au+=CP=0 Momentum equation 2)
't
ceE . - mim=
‘:‘:. +C l-b Eu+CYWPu=0 Energy equation (3)
&t
(Plp.e] Nonexplosive
F=e i Equation of state 4)
1 Plp.eF| explosive
djx - -k . .
E =F| 0.8, /'L;U Explosive reaction rate (5)

Where g denotes the density, =Jf;£lvfis the velocity, @ is the specific internal energy and P

is the pressure, Emg+li.@ is the total energy.
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The Detonation Model(2)
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» Burn function for explosive

To account for the effect of combustion on detonation dynamics, the pressure in the high explosive re gions is
computed using

P=F % F (7)
the burn fractions JF that control the release of chemical energy are computed by

F = [max (7, 7 [* ®)
Where F =10 denotes no burming; 0 < F «1 denotes buming; F =1 denotes burning finished. Wilkins
function .Fl is:

| 0, Vel Burning
A= Fa-PiF-Fr) Vo> ¥ 2 ¥y /' @<F<D ©)
L 1, FalFy o fimtdhed _—
C-J burn function .F:U is: F=1) -8)
[0, =1,
Fy=4(t—1, |V AL, t, <t <t,+AL (10)
1, fef,+AL

where Fr= 3T} wlL’-i- IJ denotes specific volume; Fj denotes initial volume; 7 denotes the ratio of specific heats

for air; t is current time; #, is the burn-beginning time; Aﬂ=?§ﬁ23‘ﬂﬁ AR is cell width; DJ is the

detonation velocity; }is the ratio of specific heats; 3, and }; are adjustable parameters.
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The Detonation Model(3)

» Equation of state for explosive

The Jones-Wilkins-Lee (JWL) equation of state (EOS) is used for the reacted and un- reacted gases
in the explosive reglons The EOS of the > pressure- -dependent JWL type is

E
> ;\_.411—— -AY . g 1——i ~RY +"“’— 6

Where Py, is the pressure, Fis relative specific Volume,f+*'=&, Eis the detonation energy per
e

unit volume, E= gy, and A, B, R1, R2 and @ are constants to be calibrated. The calculated

pressure of the shock wave by using JWL parameters determined by the numerical method agrees

with experimental results.

» Equation of state for metal material

For a moderately realistic model, Mie-Grnneisen EOS has been used for the simulations of metal materials. It has

following form:

p&C&ﬂ[l-i-j 1—1—!? :,u:! .
= + 0K j=—-1 (7
i-(s, —m]‘ i -

where €5~ J&_~ 2 arethe Grunneisen constants. @ denote the physical property parameters.

bR AME ST HBFHARR

10/25 Institute of Applied Physics and Computational Mathematics




LAD2D Code (1)

» The main features of LAD2D

LAD2D computer code, which numerically solves the equations of multi-material,
compressible fluid dynamics. Of particular interest is the general capability to handle
material interfaces, including slip, cavitations, or void closure. Also included is the
capability to treat high explosive (HE).

11/25

LAD2D: Lagrange Adaptive hvdroDvnamics code in Two
Dimensions

Solve multi-material, large deformation elastic-plastic flows;

Object-oriented programiming ,  generality, reliability and
maintainability, good modification;

Fortran 90 and C ++ programming language;

LAD2D consists of the main body and several independent general
modules. The main body includes a control, a pre-process, a
central operation, a grid, a post-process sub-gystems, a common data
module and a error process sub-system. The four independent
general modules are grid gE:nE:lal:mn(GRID“?D) adaptive mesh
refinement (AMRZ2D), remapping (REMAP2D) and grid adaption
(ADAP2D) :

More than 200,000 line statements.
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LAD2D Code (2)

» The LAD2D code architecture (see Figure 1)
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LAD2D Code (3)

» Computational scheme of LAD2D

The computational method is based on the arbitrary unstructured polygonal grid. The
Lagrangian finite volume method and various viscosity such as classical Von
Neumann-Richtmyer viscosity (the quadratic form viscosity), Landshoff viscosity
(linear viscosity), shock wave viscosity, subzonal pressure method, artificial heat
exchange in eliminating nonphysical deformation of Lagrangian mesh.

*

Fig.1 Control volume ﬂﬁ; of momentum equation
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Where g= _ ej Py | g 1s the artificial viscosity,
-3 ! R

Af is the time step, the subscript denotes the Lagrangian
cell or vortex, the superscript refers to the iteration
number, A is the area of the mesh.
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LAD2D Code (4)

» The Changing Connectivity of Mesh Technology

The changing connectivity of mesh (topology transformation) is allowed during
numerical simulation. Topological operations such as splitting and elimination of cells
and edges, merging of cells is allowed in simulation process. This approach has
successfully been implemented in LAD2D codes.

For example, figure 2 shows an example of a detonation wave behind a backward-
facing step. The changing connectivity of mesh technology was used during the
computational process.
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V&V Strategy of LAD2D (1) ©

» The figure 3 was presented the strategy for V& V&UQ of
the detonation fluid dynamics in LAD2D.
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FIGURE 3. verification, validation and uncertainty quantification in LAD2D

From the upper layer to the lower layer, including type and content of the
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V&V Strategy of LAD2D (2) “

> Software Quality Assurance

The software quality assurance (SQA) is used to validate the quality of the software
from software development to product release. We have suggested the software
quality assurance model for development processes of 15 nodes of three stages based
on the software engineering method. For detailed information, please see Figure 4.
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V&V Strategy of LAD2D (3) “

» Method of manufactured solutions

The method of manufactured solutions (MMS) 1s a more general approach for code
verification. Contrast with the method of exact solution (MES), the MMS is more
powerful in code verification within complex, nonlinear, higher dimensions, coupled
PDEs. We have constructed MMS of hydrodynamics Euler equations in Lagrangian
framework. The Figure 5 presents the procedure of MMS for code verification.
Comparison between the numerical solutions and the MMS of time versus distance,
velocity, density, pressure at versus initial position. The numerical solution is in good

g —_— =l
0,135
3 = =5
; - F478 Il-::ll.':- = -
L A - o 105 o - .50
L L H‘“‘-\. :{;'ﬁ' L " s s 5, . 10,628
| ) d 4 _— — fas ~ ' =0 H.TE
wroe f it I ¥ s a T - TR L S— ' =B
al i ' T i Y Ao :
e 1 ' 4 4 ° o Ta e TS o Y
L Y a T, | I'l\. . =10 [ “ @
) i . F Ly 7
T S Y Y '1 : r M ';n‘ Lea, T | ] e Y A
W, . § w s, & o o
E 4 . Y rg... NSI | '-..I " Co L .{ I
I L T T T c wy ¥ L £] Eeco oo o = d
_“_ T T -] L L 2T '."_\ '..'I Booh ?ixi.
% Voo e o ", ot | oy
y ! l\“{‘:t _‘:3' [
" =
- ) B R [ e YT T
ite ¥ l ] ] J oW " w e 0 iy [
f - LR 3 L s . a
. iy o Limad e, gef ="
i i ", T v L et . =
{ - a
2 0 ; 7
: . o2 iE . P S L B w o [ S R B T R
¥ Bz ] . T D 0z 04 @ ng ]
)

FIGURE 5. Comparison between the numerical solutions and the MMS of time versus distance,
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V&V Strategy of LAD2D (4) *

» Validation experiment hierarchy

Validation experiment hierarchy approach is recommended in the complex physical
coupling system when it is impossible and impractical to conduct the direct validation
experiment on the complete system. We have been constructed the validation
hierarchy tiers of the detonation fluid dynamics model in LAD2D. For detailed
information about validation activity of explosive detonation, please see Figure 6.

Dietonation Floid Dynamic: model System process
Enerzy releasze of detonation Material response Sobsystem process
F 1
L J
Initiation process Detonation wave Propagation Shock compression TUnlcading process Benchmark process
F
Initiation Grothy Diameter Curvatre Eeaction Boamdary C onstrtmiie Shock Layer Sparse Unit
condition distance effect effect it effect equation imsmlation rack effiect Process

1825 FIGURE 6. Validation hierarchy tiers of the detonation fluid dynamics model TZtPT
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V&V Strategy of LAD2D (5

> UQ and predictive capabilities

* we propose an efficient development assessment process for predictive software

with high confidence (see figure 7). The best choice for the uncertainty
quantification of any specific code will depends on experiments.

800 —
1 A .
F 1 I .
L 1] i - .
e HIH §of '
L 1 g .
gﬁm ¥ 1y =2 .
o 5 ] [ s .
=- w , ] [ Sosf Interval-Valksed Re: .
= z L ¥ 1 2 .
I N ' T e = :
= 5T i H = \
= &£ [ ' 1 i L
= = 1 . =
- ’ s s 3
2200 H ] ozl A —
[ ] H S [}
[ ’ [} - -
[ 2 daf 1 1 ]
T T TS T
524 1.54 1.844 1845 1.845 1.85 "
et Kt m e e et System Response Guantity

(13-1. Representation of input uncertainty (2)-1_ Analysis with simulation software (E)—1. Representation of response quantity U

=E 2. .- 5.)

38 F

= & fatiaation exper: extrapolation go

4 & o : -]

- 3 Application dogh eterpakatian 's 2
Bo=f g N ® 4 < =
Boor 2l (d.8) = £
§ o3 =2 ~ ! . ' (=18
Lo s (cq-13,) E

2 g ) E

= ] 3°

26 g oY = &

25 A E (e-8) (e.2)

=] [X:] 1 12 14 16 =
e (100t}

£f. system or environmental parameter

(E). Prediction and assessments for practical problem (5. Updated model and validation model

i [hchcanabion:

1. Boostor,

]
u
T

— 3, Planc wave lens,

4, TINTRIVX 40060;

dUIPYUO0I qﬁgli YIIM da8M)JOS IAIIIPAId
10J $8990ad Juduussasse Y I, °L MANOIA

Cumulative Distibution Function
a

d

[

- r

T — S, Alumninosn plate. e

<

5, — iy, Dowor ehirge. % r
B

< T Suppon plso

=

=

4 Aseapior chargo!
9. Contincmcnl t plats 1,
10 Confinenwent Plate ||

e TN
' Fesponse Guartity : :
2 anu vuinputational Mathematics

19/25

(1)-2. Experimental principle/model (2)-2. Experiment and test (3)—2. Representation of test data U



Parts of Result of V&V(1) ©

> Precision verification

The one-dimensional (1D) Riemann problem used in code tests is widely known as Sod’s problem. Here

is an example using blast wave problems. Blast wave problems are generally computational domain [-1,1]
the initial value:

Mmoo =14 Moy =15.293
nlp=-26 _.o. hU=00 __,
PP, =37.1765 'R R=10

B =14 Bra=3.1

Figure 8 shows numerical results with 14 sets of 50 to 900 mesh ( 50, 60, 70, 80, 90, 100, 200, 300, 400,
500, 600, 700, 800, 900) . we can see LAD2D procedures in the calculation of the problem of strong

shock waves, with the encryption of the grid, the numerical solution gradually approaching the analytical
solution
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Figure 8 Comparison between numerical results with the analytical solution for grid scale
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Parts of Result of V&V(2) ©

» Model validation-Experiment model

Here is a example using Diffraction of a detonation wave behind a backward-facing step. This
problem models is a detonation wave propagating through the channels with suddenly expending
section(see Figure 9). The left is a little section channels, the right region is a large section
channels. The computational domain 1s © as described in figure 10. ©a is split into two regions

filled with the explosive PBX-9404 with parameters K=2.996, DJ=8.SSA7§§ , g‘m=1.84§m§. The left

region is O =[0:3.0]x[0;0.5], The right region is ©, =[3.0;6.0]<[0;3.0]. The driver section is in the left
part of the @, the upper boundary is a solid-wall condition, The lower is a axisymmetric condition
The parameters A, B, R1, R2 and « for JWL are 4=83%24, B=0.1802, R =46, R =13, w=038.
The parameters », and » arem,=1.1, »=2.1.

PBX.0404. |3cm
v

D.Sc_t]'] > Initiation ‘point.  °a

Figure 9 Computational domain for detonation wave behind a backward-facing steps, and in
near corner containing Lagrangian reference point A and point B.
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Parts of Result of V&V(3

Figure 10 shows the computing mesh (upper) and density contours (lower) at three times. Diffraction through the

20% corner also generates a stronger corner vortex. We compare numerical results with experimental data by using

high-speed schlieren photography, which coincide qualitatively.
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Parts of Result of V&V(4
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» Uncertainty quantification

In order to assessment numerical simulation
phenomenon, Figure 11 shows time histories
behind a backward-facing step simulation,

Lagrangian reference point-A.
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Figure 11 Time histories for diffraction of a detonation wave behind a backward-facing
step simulation, recorded at Lagrangian reference point-A within 0.466667cm of the corner.
The left is the position, the right is the velocity



Parts of Result of V&V(5
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» Uncertainty quantification

Figure 12 shows time histories for diffraction of a detonation wave behind a
backward-facing step simulation, recorded position and velocity at Lagrangian

reference point-B.
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Figure 12 Time histories for diffraction of a detonation wave behind a backward-facing
step simulation, recorded at Lagrangian reference point-A within 0.03333cm of the corner.
The left 1s the position, the right is the velocity



Conclusion and Suggestions

» The credibility of the simulation results or prediction results in the
numerical simulation software has an important influence on
decision-making. Engineering application software V&V&UQ 1s
a critical method used for evaluating the credibility of the
software and simulation results.

> In this paper, we proposed the V&V&UQ strategy of detonation
fluid dynamics LAD2D code. The V&V&UQ combines the
strength of the physical experiment and numerical simulation; it 1s
used to develop higher fidelity simulation software.

» The V&V&UQ strategy of detonation fluid dynamics in LAD2D
was presents based on the foundation of scientific software’s
V&V method. The basic framework of the module verification
methods and the function validation method were proposed.
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