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Backgrounds(1)

» The main features of our problems (see figure 1).

* Multi-Material ;
* High temperature ;
* High pressure ;

* Large-deformation ;

* Compressible fluid dynamics.

High tP_rquarure

Fig.1 The characteristics of problems

= Lagrangian method is essential for such problems !




Backgrounds(2)

» The 2D Cartesian Euler equations in non-conservative form

e —+CY ii=0 Mass equation (D
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Equation of state 4)

Where @ denotes the density, =Jz£; 1,{f is the velocity, & 1is the specific internal energy and P

is the pressure, E -a+lz'2 & 1s the total energy.
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Backgrounds(3)

» Burn function for explosive
the burn fractions F that control the release of chemical energy are computed by
F = max (F, F,J]* 6)
Where F =10 denotes no burning; 0 « F «1 denotes buring; F =1 denotes buring finished. Wilkins
function fi is:

| ) 0* ‘_ Falk Burxing

Fms 'r: -V =¥k Vo=V =VF; @<F<I) (7)
L L Fa¥;
. hura Bnlshed

C-J bumn function F5 is: i = burning

. @=1) =0
0, t2t,

Fy=<lt—1,)F AL, t,«t<t, +AL (8)
I L tat,+AL

where f;,-= m’f’; fJ;;f-{'Fl:ﬂdenotes specific volume; F denotes initial volume; 7 denotes the ratio of specific heats
for air; t is current time; # is the burn-beginning time; M¥=F§M fD T AR s cell width; ﬂ; is the

detonation velocity; }”is the ratio of specific heats; ¥ and }3 are adjustable parameters.
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» Equation of state for explosive

The Jones-Wilkins-Lee (JWL) equation of state (EOS) is used for the reacted and un- reacted gases
in the explosive reglons The EOS of the pressure -dependent JWL type is

_ -Ej’ _ o _&p @k
Pass _.4i1 —a +3=01 i 9)
Where Fg,, is the pressure, F¥is relative specific volume,F = =2 , E1s the detonation energy per
g’

unit volume, E= gy, and A, B, R1, R2 and @ are constants to be calibrated. The calculated

pressure of the shock wave by using JWL parameters determined by the numerical method agrees
with experimental results.
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» Equation of state for metal material

Two equations of state (EOS) have been employed in the present work; the ‘stiffened gas’ EOS
and Mie-Gruneisen EOS.

(1) The stiffened gas equation of state where the pressure P and sound speed £, are given in terms of the density @
and the specific internal energy € by

Puciip-p)-ir-tlee, 10

c, -Ef?[:f-i:f-ﬁ% +rir-lle. (1)

(2) For a moderately realistic model, Mie-Grnneisen EOS has been used for the simulations of metal materials. It has
following form:

s

3 A
ﬂeC‘E#[HJ —%j&] ,
= b : ""‘ =+ ¥k =] (12)
(s, - 1uF >

where Cx+ &_. 3% are the Grunneisen constants. denote the physical property parameters.
2 &> 1o 2y pny property p

P=
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» These are three main methods for high nonlinear partial differential equation
s in engineering design and basic science research: Lagrangian, Euler, ALE

(Arbitrary Lagrange-Euler).

> Eulerian methods with fixed mesh are usually suitable for flow with large
deformation, but are usually not suitable for multi-material fluids where

interfaces among materials should be accurately.

i=1t

Fig.2 Euler Solver
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» Lagrangian method with mesh moves with the local fluid
velocity 1s usually suitable for multi-material fluids to
accurately capture interfaces among different.

» Lagrangian method is the most popular method and the main
simulation tool in compressible fluid dynamics with multi-
material flows of high temperature and high pressure.

t=00 1=t

Fig.3 Lagrange Solver bR B AR St BRI TRR
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» Lagrangian method

* Lagrangian methods have the advantages of well-resolved
material interfaces , but it 1s inevitable that the applications
with a large shearing distortion lead to highly distorted cells.
For example, mesh intersection, mesh tangling, large
deformation (see Fig.4). These will reduce the accuracy of the
discrete scheme , and the computation will run termination o

intersection

=

. Fig.4 Examples of large deformation in computational grllds_  mmesm
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» Purpose and motivation

* In this report, we propose an efficient computer code (LAD2D-
Lagrangian Adaptive HydroDynamics Code in 2-D Space).
LAD?2D uses a Lagrangian finite volume numerical technique.
The method manages the sliding meshes and the internal
meshes unifying as arbitrary polygonal meshes. Spatial
discretizations are formed with respect to a mesh of arbitrary
polygonal unstructured cells. Of particular interest 1s the
changing connectivity of mesh technology to handle the large
deformation mesh and to close gap during numerical simulation
processes.
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Polygonal meshes and motivation(
» Structured & Unstructured

* There are two main classes of grids. If the internal points are
connected to their neighbours in a way independent of their
position , the mesh is called structured. (Fig. 5a)

* When the pattern of the connections varies from point to point
, the mesh 1s called unstructured. (Fig. 5b)

Structure grids Unstructure grids
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Fig.5 Definition of the grids SRS
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Polygonal meshes and motivation(

» Structured & Unstructured

* In the structured grids , the connectivity of the grid is
implicitly. On the contrary , the connectivity of unstructured
grids must be explicitly described by an appropriate data
structure. unstructured grids can be crucial when dealing with
domains of complex geometry or when the mesh has to be
adapted to complicated features of the flow field.
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Polygonal meshes and motivation(
> Polygonal meshes

* The motivation of this work 1s the development methods for changing
connectivity of mesh technology. A key component of the changing
connectivity of mesh technology is polygonal meshes.

16

® 10: node number

O 4 cell number

Fig.7 Polygonal mesh and notations. The set of nodes for cell c=12 is
wse  CNL(C=12)={5,2,1,4}, and the set of cells sharing node, n=39 is NCL (n=39)={1,8,4}
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The changing connectivity of mesh{d)

» Computational scheme

The computational method is based on the arbitrary unstructured polygonal grid. The
Lagrangian finite volume method and various viscosity such as classical Von
Neumann-Richtmyer viscosity (the quadratic form viscosity), Landshoff viscosity
(linear viscosity), shock wave viscosity, subzonal pressure method, artificial heat
exchange in eliminating nonphysical deformation of Lagrangian mesh.

» Hi= m&t . "':"_: [ ' 3 i n n 3 ' W " b} '!—:‘ V
ﬂm% =i, +?§ g_ [Qp-l—ﬁ)l-‘hit tﬁﬁ e JH- C,F'H'QL.;J{@ —h ]]}
i -2 {pegll .l -x" i‘#ij gl ‘l e - “"‘}]1'1‘

- Vg Prglg o W, —Xg BTGl g lXg =Xy |1

Fig.8 Control volume ﬂz of momentum equation

Af is the time step, the subscript denotes the Lagrangian
cell or vortex, the superscript refers to the iteration
number, A is the area of the mesh.
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The changing connectivity of mesh(2)

* The changing connectivity of mesh (topology transformation) is
allowed during numerical simulation.

For example. in Figure 2. during the calculation processes. when the node @, is equal to the node
a, (a =a,. ) of the mesh—i at t™ . the concave-point @, cut across the edge @, —a, in
mesh—i (only neighbor edge &, — a,, with @, ). connectivity of the mesh—i to change. which to

eliminate edge &, — a,, of the mesh—i. is defined as cut down edge to mesh—i on the left. From
Figure 2. 1t 1s clear that topological operations with logically quadrilateral element are changed triangles

element.
a,,
a. (7)
a
g meeeed '——=.__,
o oy > A a,
(7,)
Ir?‘i‘—]. Ir?‘i‘_]-

Figure 2 Cutting down edge to mesh —i on the left
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The changing connectivity of mesh(@

n+l

cut
, In mesh—i . connectivity of the mesh—1i to change. which to eliminate edge

a,., — a, of the mesh—i.1s defined as merging to mesh—i . or which to refine edge a,, — a, of the
mesh —i . 1s defined as refining to mesh —i .

For example, In the Figure 3. during the calculation processes, when the concave-point @, at 7
across the edge a, — a,,

17/34
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Figure 3 Merging or refining to mesh —i
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The changing connectivity of mesh{#)

* This approach has successfully been implemented in
LAD2D software, and applied to close gap (see Figure 4)
and to handle the large deformation mesh(see Figure 5)
during numerical simulation.
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Figure 4 The changing connectivity of mesh applies to closing slide surface with void cavity
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Figure 5 The changing connectivity of mesh applies to handle the large deformation mesh
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LAD2D Code (1)

» The main features of LAD2D

19/34

LAD2D: Lagrange Adaptive hvdroDvnamics code in Two
Dimensions

Solve multi-material, large deformation elastic-plastic flows;

Object-oriented programming ,  generality, rehability and
maintaimability, good modification;

Fortran 90 and C ++ programming language;

LAD2D consists of the main body and several independent general
modules. The main body includes a control, a pre-process, a
central operation, a grid, a post-process sub-systems, a common data
module and a error process sub-system. The four mdependent
general modules are grid generation(GRID2D), adaptive mesh
refinement (AMR2D), remapping (REMAP2D) and grid adaption
(ADAP2D) ;

More than 200,000 line statements.



LAD2D Code (2)

» The LAD2D code architecture (see Figure 1)
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Numerical examples (1)

21/34

To 1illustrate the effectiveness of our technique, three
simulations are presented.

The first comprises a detonation wave propagating through
the channels with suddenly expending section.

Next, the cavitations or void closure properties of the
method are investigated by simulating sliding detonation
model of one point 1nitiation.

Finally, the large deformation capabilities of the method are
investigated with the simulation of a high velocity impact.

b3 i F '%1‘|‘§§$I+ﬁﬁnﬁﬁ
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Numerical examples (2)

> The diffraction problem of a detonation wave behind a backward-facing step

Diffraction of a detonation wave behind a backward-facing step is one of the fundamental topics in
shock wave dynamics and is studied extensively by many researchers.
The computational domain £¥, which is described in Figure 1. £} is split into two regions filled

with the explosive PBX-9404 with parameters K=2.996, D;= 8.88&”}? , =184 %ﬂ;. The

left region is €% =[0.3.0]x[0,0.5], The right region is € =[3.0,6.0]x[0,3.0]. The driver section is
in the left part of the £3,, the upper boundary is a solid-wall condition; the lower is an ax symmetric
condition. The parameters 4, B,R;, R, and @ used for JWL are A=8524, B=0.1802,
Ry=46, R,=1.3, @=0.38. The parameters m, and J; arechosenas my=1.1, pp=21.
The structured mesh of 180x30 elements is used to discretise the left region, and The structured
mesh of 180x120 elements is used to discretise the right region.

-5-
i
]

PBX-9404. |3cm

0.5cm | Initiation point-  °A 4
fa--===-= 3CM -------+14-—-- 3CM -~

Fig.1 Computational domain for detonation wave behind a backward-facing steps,
22134 and in near corner containing Lagrangian reference point A and point B. T

tics



Numerical examples (3)

> diffraction of a detonation wave behind a backward-facing step

The changing connectivity of mesh technology was used during the computational

Pprocess.
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Numerical examples (4)

> diffraction of a detonation wave behind a backward-facing step

Figure 3 shows the computing mesh (upper) and density contours (lower) at three times.
Diffraction through the 20" corner also generates a stronger corner vortex. We compare numerical
results with experimental data by using high-speed schlieren photography, which coincide
qualitatively.

Fig.3 The comparison between the numerical results and the experimental data
(upper: mesh; center: contours of density; under: experimental results)



Numerical examples (5)

> The sliding detonation model of one point initiation

The detailed structure of this model can be seen in the Figure 1. Five regions exist in this model,
from the inner to the outer, it is filled with gas (vacuum zone), tungsten(W), aluminum(Al),
explosive(PBX9404), and tungsten(W). The radius of these regions are R, =10.0cm, R =102cm,

R, =10.3cm, R =132cm, R, =13.3em respectively.

Fig.1 The computational domain of one point initiation
2534 A0 SR 1 R )3 T SR E T uT R PR
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Numerical examples (6)

> The sliding detonation model of one point initiation

In the simulation process, the central vacuum zone used the changing connectivity of
mesh technology. Figure 2 shows process of the central cavity closing. The point-a
and point-b on the Figure 2 gradually closed cavity by using the changing
connectivity of mesh technology.

Fig.2 The computational grids changed at central vacuum zone

bR AME ST HBFHARR
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Numerical examples (7)

> The sliding detonation model of one point initiation

Figure 3 display the distributions of pressure at increasing times, which also shows
procedure of detonation wave propagation. In the simulation process, the central
vacuum zone used the changing connectivity technology of mesh. We can see from
Figure 3 that the detonation wave propagation is reasonable by the changing
connectivity technology of mesh, it is can be used to verify the LAD2D software.

(a) rwm20pe (B) rm2B it (&) rm30E
{d) rm3im (6) rmdlpr (f) rmdZur

Fig.3 Panels (a)-(f) display the distributions of pressure P at increasing times s

Institute of Applied Physics and Computational Mathematics
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Numerical examples (8)

> The high-velocity impact simulations

The computational domain employed in this simulation is shown in Figurel. The initial meshes,
which completely fills the domain, is constructed from a number of elements. The unstructured
mesh of 3244 elements is used to discretise the circular projectile, which is 10mm in diameter.
The structured mesh of 15x100 elements is used elsewhere to discretise the rectangular

target (2= 50mm) (see Figure 2). Again the stiffened gas EOS is used for both steel and aluminum

(see Table 1 for material properties). A CFL number of 0.3 is used in timestep control, and the
changing connectivity of mesh technology is used during numerical simulation.

Lagrangian reference point A
.

Projetile (1 = Smm)

31001%

Lagrangian reference point B

Fig.1 Domain configuration for the higt-velocity impact of
steel projectiles on a thin aluminum target. and in target

containing Lagrangian reference point A and point B.

Winslow generation method. i

Tﬁl‘get(2 X 50”1”?) Structured quadrilateral meshe Unstructured triangular meshes using

launay generation method.

®

Fig.2 The initial mesh distribution is unstructured
mesh of 3244 elements for steel projectile and

structured mesh of 15*200 elements for aluminum



Numerical examples (9)

> The high-velocity impact simulations

The stiffened gas equation of state where the pressure P and soundspeed &, are given in terms of the density @ and

the specific internal energy € by

P=ciip-pl+ir-lipe,

o, =] r-(r-0A/ | rlr-te.

(1)

2)

Material properties utilized in the three simulations are listed in Table 1.

Table 1 Material property for aluminum and steel

property Aluminum Steel
¥ ™

Density, =, 3

Y ﬁa%ﬂi' 2.785 7.900

ﬂg i
o

Bulk sound speed, E-:lj. ‘Q.ﬁ»l 5308 4.600
Gruneisen parameter, 3 2.000 2.170
Shear modulus, G{fcPal 2760x107  8.530x107
Yield stress, ¥yl &Pa) 0300x10°  0.979x10°

29/34
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Numerical examples (10)

> The high-velocity impact simulations

Figure 3 shows part of the Lagrange computational mesh with the changing connectivity of mesh

technology in the vicinity of the projectile at 1.0 and 2.0 . Even at this early time,

Lagrangian motion of the mesh with the changing connectivity of mesh technology, and the
formation of ejecta from both the projectile and target, is evident.

i (a) 1Ops

S
Sesuigpsatiisns

S

Fig.3 Detail of Lagrange computational mesh with the changing connectivity of mesh technology for the
30/34 high-velocity impact simulation of steel projectile on the aluminum target
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Numerical examples (11)

> The high-velocity impact simulations

Transient results to an elapsed time of 8.0 from initial impact are shown in Figure 4 for a

steel projectile striking an aluminum target. Figure 4a-4h shown the material geometry and mesh
distributions by LAD2D software.

(@) 1.0us (b) 2.0us (c) 3.0us (d) 4.0us

(e) 5.0us (f) 6.0us (g) 7.0us (h) 8.0us

Fig.4 Transient results illustrating material deformation and geometry structures for the high-velocity

31/34 impact of a circular steel projectile on an aluminum target e



Numerical examples (12)

The high-velocity impact simulations

Figure 5 shown time histories for high-velocity impact simulation, recorded at Lagrangian

reference point A and B within the target (see Fig.1).
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Fig.5 Time histories for high-velocity impact simulation, recorded at Lagrangian reference point A and B

within the target (see Fig.1)

The three simulations shown the large deformation capabilities of the Lagrange
method with the changing connectivity of mesh technology. {p 25 F#3E 5t & 2 3 85T Fi
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Conclusions

* Lagrangian method is a main simulation tool in multifluids under
high temperature and high pressure.

* Besed on the unstructured arbitrary polygonal mesh, the new
methods with the changing connectivity of mesh technology
to to handle the large deformation mesh and to close gap was
presented during numerical simulation processes.

* The three numerical examples have demonstrated that our new
method has strong simulation the large deformation capabilities.

bR AME ST HBFHARR
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