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Mixed cells in ALE methods contain interfaces between different materials (left) or 
mixtures of materials (right).  

Introduction 

heterogeneous mixture interface 
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Basic equations 
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u(ux, uy) is velocity (node-centered) 
T is stress tensor 

е is specific internal energy  
D is strain rate tensor 

β is volume fraction of the material (βξ=Vξ/V) 

r(x,y) – radius vector 

ξ is material index  
ρ is density  

Tijξ = Sijξ + δijРξ  

( )P P ,eξ ξ ξ ξ= ρ

( )f , 0S Dξ ξ ξ= =

S – stress tensor deviator 

equation of state 
model of matter 

ux, uy are defined at node centers, , , e , P , Sξ ξ ξ ξ ξρ β are defined in cells, 

        need to be defined.  

In the equations P→P+q  and  Pξ→Pξ+qξ,  q is artificial viscosity. 

P, S, q, qξ, Dξ, u∇⋅ ξ
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Introduction of closure relations  
p p ,ξ ξ

ξ

= ψ∑ q q ,ξ ξ
ξ

= ψ∑ S Sξ ξ
ξ

= ψ∑

    

   

where  ψξ is defined by the closure model adopted. 

, ψξ, qξ, Dξ   are not defined. Closure relations are needed. 

V V ,ξ
ξ

= ∑ 1ξβ =∑ V V ,ξ
ξ

∆ = ∆∑ ξ ξβ ∇ ⋅ = ∇ ⋅∑ u u

Their introduction is subject to conservation laws. 
 
Requirement 1 is additivity of volumes (“volume” conservation) 

or       or     

D Dξ ξ
ξ

β =∑
u

D D
u
ξ

ξ

∇ ⋅ 
= ⋅  ∇ ⋅ 

Natural extension of (2)  is  

satisfied at 

  

e eξ ξ= α∑ M Mξ ξα =e eξ ξ∆ = α ∆∑
Requirement 2  is additivity of energies (energy conservation) 

,     

where 

(2) 

(3) 

(4) 

(1) 

Thus, the basic parameter to be defined by the closure model is 

The second parameter is  

u∇⋅ ξ

u∇⋅ ξ

qξ 
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Classification of the models 
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 Two methods based on the model of equal pressures of materials.  
 
 
1. Harlow's method [Harlow, 1964]; 
2. Tipton's method [Tipton, 1989];  

 
3. Delov's method based on the acoustic Riemann solver (Delov) [Delov, Sadchikov, 2005] 

(this model also underlies the DSS [Kamm, Shashkov, Fung, Harrison, Canfield, 2010] and 
the KSR [Kamm, Shashkov, Rider, 2011]) methods developed later;  
 

4. K&S method based on the Riemann solver [Kamm, Shashkov, 2010].  
 

 
  

Isotropic single-stage closure methods 
Relaxation methods 

p p,ξ = (5) 
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Isotropic single-stage closure methods 
Non-relaxation methods 

 5. The methods based on the equal compressibilities of materials (        ) [Бахрах, 
Спиридонов, Шанин, 1984; Benson, 1992]; 

 
 
 
6. The methods based on the equal pressure increments of materials (Δp) [Bondarenko, 

Yanilkin, 2002]; 
 
 
 
 
7. The methods based on equal velocities of materials behind weak shock (Δu) 

[Goncharov, Kolobyanin, Yanilkin, 2006]; 

u∇⋅

u u uξ ζ∇ ⋅ = ∇ ⋅ = ∇ ⋅ (7) 

p pξ ζ∆ = ∆

u uξ ζ=

(8) 

(9) 
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Isotropic two-stage closure methods 

Two-stage models include the stage of subscale interactions between the materials  
in the non-equilibrium state; so the first stage here can only use models 5-7. This 
approach for closure models has been proposed independently in [Barlow, 2001]  and  
[Goncharov, Yanilkin, 2004].  
The subscale pressure relaxation method  (the PR method) from [Goncharov, 
Yanilkin, 2004] is versatile and it is used jointly with models 5-7 denoted below as 
the        -PR, Δp-PR and Δu-PR methods (Pressure Relaxation).  
    
All the above methods do not employ the interface location inside a mixed cell. 
However, there are methods that make essential use of this information. A method of 
this kind was first proposed in [Barlow] and then developed in the “interface-aware sub-
scale dynamics” IA-SSD method [Hill, Barlow, Shashkov, 2014 ] for the multi-material 
cell case. It is a two-stage method, the first stage in which employs the         model. The 
second (subscale) stage uses the model based on the acoustic Riemann solver (Delov’s 
model). 
    

u∇⋅

u∇⋅
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Pressure relaxation method (method PR) 

 
  
         Materials’ pressure relaxation is done in the adiabatic approximation subject to the 

requirement that total divergence and energy remain constant at this stage. The formula for 
the materials’ divergence is 

2

p
c

u ξ
ξ

ξ ξ

∆
∇ ⋅ = −

τρ ( )p Ac h p pξ ξ∆ = τ − А ~1,  

where p is common pressure 

(10) 

p pξ ξ
= β∑



10 

Anisotropic closure methods 
1 Concept 

Let us consider two limiting cases of interface location relative to the wave motion (shock, 
acoustic or elastic wave)   

E∆

In the first case (left figure), velocity is mostly normal to the interface, so all the above models 
are suitable.  

  

 
 
 

In the second case (right), velocity is mostly directed along the interface, while lateral velocity 
is insignificant. It means that the materials contract or expand tangentially to the interface; thus, 
equality of divergences may be more consistent in this case.  
Thus, to ensure acceptable modeling accuracy for the two different types of flow, different 
closure relations need to be used.  
For this purpose, two-stage models are proposed. 
Like above, we represent the total divergence as a sum of two items 

1 2u u uξ ξ ξ∇ ⋅ = ∇ ⋅ +∇ ⋅

The two methods differ in the ways of their determination.   
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Anisotropic closure methods 
1 Method ACM-1 

E∆

  

1ξ∇ ⋅ = ∇ ⋅u u
The first stage uses the model of equal divergences giving   

At the second stage, the pressures of the mixed cell materials get relaxed according to an 
algorithm, which is basically the same as the PR algorithm. 

nu= u uτ∇ ⋅ ∇ ⋅ + ∇ ⋅

    
2 2

p
c

u ξ
ξ

ξ ξ

∆
∇ ⋅ = −

τρ

The only distinguishing feature is that for the ACM-1 model, the factor A depends on the 
mutual orientation of velocity and interface directions.  
The total divergence is written as the sum of two components:  

( )p Ac h p pξ ξ∆ = τ − А (constant) ~1,  

n
0A A u

u
∇⋅

= ⋅
∇ ⋅

Suppose   А0 is some constant (A0 =1)   

n∇⋅ = ∇ ⋅u u

n 0∇⋅ =u

Thus, the factor A is variable in this case.  
If the velocity is normal to the interface 

 If the velocity is directed along the interface                  , A=0 

, A=A0 
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Anisotropic closure methods 
2 Method AСM-2 

E∆

  

We decompose the divergence of the entire cell and its materials into two components:  
normal and tangential (relative to the interface location): 

    

For divergence in the direction normal to the interface, one can use any of the closure models 
(1, 5-7); we use the model 

The materials are assumed to have equal compressibilities along the interface    
nu= u uτ∇ ⋅ ∇ ⋅ + ∇ ⋅ nu u uξ ξτ ξ∇ ⋅ = ∇ ⋅ + ∇ ⋅

ξτ τ∇ ⋅ = ∇ ⋅u u

u uξ ζ∆ = ∆

n nξ ξ∇ ⋅ = λ ∇ ⋅u u

k

k k

1
c cξ
ξ

β
λ = ∑

nξ′∇ ⋅u
nξ∇ ⋅u

Once this part of the divergence is distributed to the materials, relaxation of their pressures 
is done by the PR method, which makes an additional contribution,             , 
to the divergence  

 n n nξ ξ ξ′∇ ⋅ = ∇ ⋅ + ∇ ⋅u u u

 nξξ ξτ∇ ⋅ = ∇ ⋅ + ∇ ⋅u u uUltimately,  
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Method for calculating mixed cells with vacuum 
E∆

One of the materials available in EGAK is a zero-pressure “vacuum”. For the case of vacuum, 
a special algorithm has been developed, which is the same for closure methods 1, 5-7. The 
development of this algorithm was motivated by the fact that the pressure for vacuum is 
specified rather than controlled by the closure method.  

  

In a mixed cell with vacuum, two cases are possible:  0 и 0u         u∇⋅ > ∇ ⋅ ≤

.  

0u∇⋅ > u uξ∇ ⋅ = ∇ ⋅Case                  ;  it is assumed that 
0u∇⋅ ≤Case                 ;  cell volume is assumed to decrease only through a decrease in vacuum 

volume.  

0∇⋅ ≥u

For the ACM-1 and ACM-2 methods, the total divergence is represented as a sum: 

nu= u uτ∇ ⋅ ∇ ⋅ + ∇ ⋅
If the cell expands, ξ∇ ⋅ = ∇ ⋅u u

0∇⋅ <uAt         , two cases are possible: 

n 0∇⋅ <u ξ ξτ∇ ⋅ = ∇ ⋅u u vac
vac

u u uξ
ξ

β
∇ ⋅ = ∇ ⋅ − ⋅∇ ⋅

β- if                      then 

n 0∇⋅ ≥u- if                      then ξ∇ ⋅ = ∇ ⋅u u
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Artificial viscosity  
E∆

  

In addition to the methods discussed above, mixed cells require relations to calculate artificial 
viscosity for the materials. Six approaches are considered in [Goncharov, Kolobyanin, Yanilkin, 
2010].  The best of them is number 3. 

    q qξ =

,h h,ξ ξ ξ ξρ = β ∇ ⋅u
2 2

3 3
k k k

q q ξ ξ ξ
ξ

ρ β λ
=

ρ β λ∑

q ~ξ ξρ k k k
q q ξ
ξ

ρ
=

ρ β λ∑

e eξ ζ∆ = ∆ q q ξ
ξ

ξ

ρ
=

ρλ

p pξ ζ∆ = ∆
( )

k k

k k

q q
p
e p e

ξ
ξ

ξ
ξ

ξ ρρ

ρ
=

 ∂ β ρ
λ   ∂ ∂ ∂ 

∑

q ~ pξ ξ

( )2A c p e qξ ξ ξ ξ ξ ξρ
⋅ρ = ∂ ∂ ρ

  

1 equal to the cell-average viscosity 

2 viscosity with its quantities 

3 proportional to material densities 

4 equal pressure increments 

5 equal energy increments 
 

6 proportional to pressure increment   
А is proportionality factor 



15 

Test problems and results 
E∆

The following unified types of data processing are presented for the 1D problem 
simulations.  

1. Plots of convergence in the L1 norm. 
 

2. Tabulated quantities characterizing the order of convergence of integral error of basic 
quantities in the L1 norm. 

  The error is calculated by the formula 

comp exact 1
y y y Ahσδ = − =

3. Tabulated values of basic quantities in mixed cells. 

where h is the initial mesh spacing, ycomp, yexact are the calculated and the exact value 
of the quantity at the cell center. 
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1. Sod problem 
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Sod problem  
Plots of convergence in the L1 norm 

Convergence parameters 
L1 100 200 400 800 A σ 

p 1.89E-02 1.11E-02 6.33E-03 3.58E-03 1.89E-02 0.80 

ρ 1.58E-02 9.39E-03 5.35E-03 3.01E-03 1.59E-02 0.80 

e 9.09E-03 5.42E-03 3.01E-03 1.71E-03 9.22E-03 0.81 

u 3.40E-02 1.78E-02 8.66E-03 4.99E-03 3.45E-02 0.93 

АСМ-1 

L1 100 200 400 800 A σ 

p 1.96E-02 1.13E-02 6.44E-03 3.60E-03 1.97E-02 0.81 

ρ 1.63E-02 9.51E-03 5.40E-03 3.01E-03 1.65E-02 0.81 

e 9.53E-03 5.51E-03 3.08E-03 1.71E-03 9.64E-03 0.83 

u 3.11E-02 1.61E-02 8.30E-03 4.29E-03 3.11E-02 0.95 

АСМ-2 
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2. Water-air shock tube problem  
(Plohr, 1988;  Saurel, Abgrfll, 1999)  
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Water-air shock tube problem 
Plots of convergence in the L1 norm 

   

   

L1 250 500 1000 A σ 
p 2.39E-02 1.53E-02 9.37E-03 2.39E-02 0.68 
ρ 2.51E-03 1.44E-03 7.93E-04 2.51E-03 0.83 
e 1.64E-03 9.19E-04 5.29E-04 1.64E-03 0.81 
u 1.22E-02 7.13E-03 4.69E-03 1.22E-02 0.69 

АСМ-1 
 

L1 250 500 1000 A σ 
p 2.55E-02 1.66E-02 1.00E-02 2.58E-02 0.68 
ρ 3.73E-03 2.23E-03 1.28E-03 3.76E-03 0.77 
e 2.63E-03 1.57E-03 8.93E-04 2.65E-03 0.78 
u 1.51E-02 8.52E-03 4.76E-03 1.51E-02 0.83 

АСМ-2 

Convergence parameters 
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2. Water-air shock tube problem 
(Plohr, 1988;  Saurel, Abgrfll, 1999)  

Plots of convergence in the L1 norm 
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3. Mixed-material shock transition problem 

   

Velocity at the boundary is constant  ux=2, EoS is ideal gas. 

The problem has an analytical solution obtained by Goncharov assuming that the materials 
have equal pressures.  

( )
(3.0, 1.0,  0.,  0.,  0,  0.5 ),     if   -2.0  x  1.0,

, ,e,p,u,
(1.2, 1.0,  0.,  0.,  0),  0.5)      if   -2.0  x  1.0

≤ ≤
γ ρ β =  ≤ ≤

Initial data  

This problem differs from the two above. First, there are no pure cells, so pure-cell simulations 
are inapplicable. Second, only some of the above plots can be obtained for it. In particular, it 
makes almost no sense to perform convergence calculations for this problem, because the 
steady-state solution in the mixed cells does not depend on the mesh spacing.  

ux 
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3. Mixed-material shock transition problem 

   

   

   

 

        

       

u∇⋅u∇⋅    
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3. Mixed-material shock transition problem 
Steady-state quantities in a mixed cell  

   

u∇⋅

u∇⋅

метод D p1  p2  ρ1  ρ2  e1  e2  
exact 2.839 5.677 5.677 2.0 11 1.419 2.581 

3.456 13.219 0.581 2.379 2.379 2.778 1.222 

   Δu  2.827 5.886 5.324 2.053 10.372 1.434 2.567 

      -PR (ACM-1) 2.859 5.715 5.715 1.956 11.253 1.461 2.539 

Δu-PR (ACM-2) 2.817 5.640 5.640 2.047 10.754 1.378 2.622 
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4. 2D problem of elastic wave in a plate 
(proposed by A. Krayukhin) 

 

   

The plate is titanium surrounded with vacuum or air; it is flying at v0=0.01 km/s and 
hitting a rigid wall; as a result, an elastic wave is propagating in the plate. 

closure method surrounding 
medium cw, km/s 

exact 5.3 

pure cells air 5.3 

Δu-PR vacuum   4.8 

ACM-1 vacuum   5.1 

ACM-2 vacuum   5.1 

ACM-1 (oblique mesh) vacuum  5.1 

Δu-PR air 4.7 

ACM-1 air  5.1 
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Discussion of results and conclusions  

.  

 The simulations – both presented here and not included in this overview – 
demonstrate that all the methods under consideration have good convergence (~1) to the 
exact solution with decrease in the mesh spacing on all the 1D problems. Note that the order 
of convergence of the simulations with closure methods is basically controlled by that of the 
main difference scheme. As for the error of the closure methods themselves, it is basically 
controlled by the value of the factor A in the error formula  
 
  
 You can choose the method you like. However, two circumstances need to be 
mentioned, which are important when choosing the method. First, the methods differ in the 
amount of calculations. Second, the methods differ in the complications in program 
implementation associated with limitations in their applicability.  
 
 As for the 2D problem, the anisotropic methods have no alternative. They possess 
the same accuracy as the basic methods on the 1D problems, because they rest upon the same 
closure models, and are more accurate as applied to the 2D problem. Of the two anisotropic 
methods, preference can be given to ACM-1, because it is easier to implement.  

comp exact 1
y y y Ahσδ = − =
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.  

  

Thank you for attention 
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