Российский Федеральный Ядерный Центр – Всероссийский НИИ технической физики имени академика Е.И. Забабахина

Е.А. Кашаева¹, Г.Н. Малышкин¹, С.И. Самарин¹, С.Ю. Таскаев²

¹ Российский Федеральный Ядерный Центр –

Всероссийский научно-исследовательский институт технической физики имени академика Е.И. Забабахина, Снежинск, Россия, g.n.malyshkin@vniitf.ru

² Институт ядерной физики СО РАН, Новосибирск, Россия, taskaev@inp.nsk.su

РФЯЦ-ВНИИТФ

Программа ПРИЗМА - моделирование переноса частиц методом Монте-Карло

- Нейтроны, фотоны, электроны, позитроны, ионы
- Спектральные библиотеки ядерных данных: ENDF/B-VI, -VII,..., EPDL-97,...
- Тепловые нейтроны: модель свободного газа + модель учета химической связи
- Трехмерная геометрия
- Развитые методы уменьшения статистической погрешности
- Выделение вкладов различных компонент в оцениваемые функционалы

Расчетные исследования по программе ПРИЗМА для бор-нейтронозахватной терапии (BNCT) 2005 – 2016 гг

Моделируемые процессы в медицинской установке:

- Перенос протонов в слое Li, рождение нейтронов и гаммаквантов
- Распространение нейтронов и гамма-квантов в системе

Направления исследований:

- Оптимизация системы формирования пучка нейтронов
- Моделирование радиационных полей вне бункера с установкой
- Сопровождение экспериментов по измерению спектра нейтронов и гамма-квантов
- Расчеты активации конструкционных материалов

Нейтроногенерирующая мишень на медной подложке

Сечение реакции ⁷Li(p,n)⁷Be

Реакции взаимодействия протонов с Li:

- ⁷Li(p,n)⁷Be
- ${}^{7}\text{Li}(p,p'+\gamma){}^{7}\text{Li}, \quad E_{\gamma} = 0,478 \text{ M} \Im B$
- ⁷Li(p, γ)⁸Be
- ⁶Li(p, γ) ⁷Be

Какой должна быть энергия протонов? Обычно: 2.3 – 2.8 МэВ Припороговый режим: 1.915 МэВ?

Общий вид бункера с установкой

Расчетная модель

Расчет распределения доз:

- на поверхности стен
- на расстоянии1 м от стен.

Неаналоговое моделирование (Я.З. Кандиев):

- экспоненциальное преобразование
- весовые окна

Распределение мощности эквивалентной дозы (мкЗв/ч) при энергии протонов 1.915 МэВ, ток 10мА

Внешняя стена (улица)

Внутренняя стена с дверью

на расстоянии 1м

Пространственная сетка: 10×10 см²

Распределение мощности эквивалентной дозы (мкЗв/ч) при энергии протонов 2.5 МэВ, ток 10мА

Пространственная сетка: 10×10 см²

Рождение нейтронов в слое Li

Ток 10 мА ~ 6•10¹⁶ протонов/с

Измерение и расчет спектра нейтронов на выходе мишени при энергии протонов 1.915 МэВ.

Измерение спектра выполнено времяпролетным методом

Принципиальная схема системы формирования пучка нейтронов

Система формирования пучка нейтронов

Оценка эквивалентной дозы

<u>Относительная биологическая эффективность (ОБЭ)</u> для опухоли и тканей мозга:

- фотонов 1.0
- нейтронов 3.2

Составная биологическая эффективность (СБЕ):

- для опухоли 3.8
- для тканей мозга 1.35

<u>Концентрация ¹⁰В:</u>

- в опухоли 52.5 ppm
- в здоровых тканях 15 ppm

В расчетах оцениваются составляющие дозы:

- D_{10_B} доза нейтронов на ¹⁰В при 1 ppm
- D_v доза гамма-квантов
- D_N доза нейтронов

<u>Эквивалентная доза в опухоли</u> = 3.8 * 52.5 * D_{10в} + D_v + 3.2 * (D_N - D_{10в})

= $(1.35 \times 15) \times D_{10_{B}} + D_{v} + 3.2 \times (D_{N} - D_{10_{B}})$

РФЯЦ-ВНИИТФ ЭКВИВАЛЕНТНАЯ ДОЗА В ТКАНИ

Спектры и дозы для энергии протонов 1.915 и 2.5 МэВ

Near-threshold mode @ 1.915-1.95 MeV protons [Kandiev, et al. ARI 69 (2011) 1632]

neutron energy spectrum

Dose rate @ 10 mA – 0.5-1 RBE Gy / min Advantage depth – 7 cm Therapeutic ratio – 2.5 advantage – low yield of neutrons and low activation of the lithium target and the facility

Ортогональная проекция. Спектры и дозы для энергии протонов 2.5 МэВ

Оптимизация состава замедлителя и отражателя для энергии протонов 2.3 МэВ

Модель	Замедлитель	Отражатель
1	MgF ₂	Pb
2	AIF ₃	Pb
3	MgF ₂ + AIF ₃	Pb
4	MgF ₂ + AIF ₃	Pb + C

Нейтроногенерирующая мишень на танталовой подложке

Расчетная модель выполнена по проектным чертежам изготовленной мишени и системы формирования пучка

Спектр нейтронов на поверхности фантома

Максимум спектра нейтронов лежит в эпитепловой области энергий

Распределение мощности эквивалентной дозы в фантоме для энергии протонов 2.3 МэВ

Временное хранилище активированных мишеней

Мощность дозы на высоте 0.5 м над хранилищем при различной толщине Н свинцовой крышки

R (см) - радиус от оси трубы

Определена оптимальная толщина крышки – 50 мм

Заключение

За десятилетие сотрудничества коллективов ИЯФ и РФЯЦ-ВНИИТФ в области бор-нейтронозахватной терапии по программе ПРИЗМА выполнен большой объем разносторонних расчетных исследований.

Они способствовали лучшему пониманию экспериментально наблюдаемых физических явлений и выполнению работ по оптимизации конструкции разрабатываемой медицинской установки.

Спасибо за внимание!

