

Оптимизация нейтронно-физических и теплогидравлических характеристик активной зоны блочного расплавносолевого реактора с разделением функций производства и передачи энергии

Международная конференция **«XIII ЗАБАБАХИНСКИЕ НАУЧНЫЕ ЧТЕНИЯ»**, 20–24 марта 2017 г., Снежинск

М.Н. Белоногов, В.А. Симоненко

введение

В подавляющем большинстве зарубежных и российских проектов расплавносолевых реакторов рассматривается реактор полостного типа с быстрым спектром нейтронов с циркулирующей топливной солью (например, проекты MOSART [1], MSFR [2]).

Реактор с прокачиваемой топливной солью обладает рядом существенных недостатков:

- ✓ эффективная доля запаздывающих нейтронов примерно в два раза меньше, чем для реакторов с покоящимся топливом, что обусловлено, прежде всего, распадом части ядер-предшественников вне активной зоны;
- ✓ требование высокой износостойкости конструкционных материалов активной зоны и первого контура в условиях прокачки топливной соли в течение приемлемого срока эксплуатации установки (50-60 лет);
- ✓ остается нерешенным вопрос организации системы управления и защиты.
 В работе рассматривается альтернативная концепция блочного расплавносолевого реактора с неподвижным топливом.

[1] – Ignatiev, V., Feynberg, O. Progress in Development of Li, Be, Na/F Molten Salt Actinide Recycler and Transmuter Concept [Electronic resource]: <u>www.torium.se/res/Documents/7548.pdf</u>. International Congress on Advanced in Nuclear Power Plants, Societe Francaise d'Energie Nucleaire. – 2007.

[2] – Fast Spectrum Molten Salt Reactor Options [Text]. – Oak Ridge National Laboratory, ORNL/TM-2011/105, Auth.: Holcomb, D.E., Flanagan, G.F., Patton, B.W., Gehin, J.C., Howard, R.L., Harrison, T.J., 2011.

Блок реактора и его разрез на уровне активной зоны

Концепция блочного расплавносолевого реактора

Связанный расчет нейтронно-физических и теплогидравлических характеристик. Постановка задачи

Параметр	Значение	
Высота активной зоны	102,901 (см)	
Радиус активной зоны	55,618 (см)	
Толщина верхнего и нижнего отражателей	20 (см)	
Толщина верхнего и нижнего коллекторов	50 (см)	
Толщина корпуса реактора	5,5 (см)	
Толщина стенки канала с теплоносителем и СУЗ	0,5 (см)	
Радиус канала с теплоносителем	2 (см)	
Радиус канала с стержнями СУЗ	1,7 (см)	
Зазор между оболочкой несущей трубы и стержнем ПЭЛ	0,2 (см)	
Скорость на входе в коллектор	0,76 м/с	
Температура на входе в коллектор	600 C	
Толщина газового зазора между оболочкой канала и материалом ПЭЛ	0,15 (см)	
Каналы с теплоносителем и стержнями СУЗ расположены в соответствие		
гексагональной решеткой (правильные шестигранники) с шагом 5,5618 (см). Международная конференция «XIII ЗАБАБАХИНСКИЕ НАУЧНЫЕ ЧТЕНИЯ», 20-24 марта		

2017 г., Снежинск

Выбранные материалы блока реактора

- Топливная соль эвтектика FLiNaK (11,5NaF 46,5LiF 42KF, % моль) с растворенным в ней UF₄, обогащение по Li⁷ – до 99,99%;
- Соль-теплоноситель FLiNaK;
- Корпус реактора сплав хастеллой-Н на основе никеля и молибдена;
- Трубки на данный момент рассматриваются сплав хастеллой-Н и керамические материалы;
- Отражатель графит;
- Поглотитель карбид бора;
- Газовый зазор в стержне с поглотителем гелий.

Динамическая модель блока реактора

Динамическая модель блока реактора позволяет:

- ✓ автоматически перестраивать геометрию реактора и изменять начальные и граничные условия с помощью управляющих параметров;
- ✓ варьировать детализацию расчетной сетки (в случае использования программы конечно-элементного анализа);
- ✓ реализовать алгоритм движения органов системы управления и защиты;
- ✓ значительно сократить время подготовки задания на расчет;
- ✓ автоматизировать процесс проведения расчетов.

Динамическая модель блока реактора. Используемые программные средства

Для проведения детального расчета теплогидравлического полномасштабной модели блока реакторной установки необходимо построение сеточной модели с большим количеством ячеек (примерно 5 миллионов). Предварительные теплогидравлические расчеты С таким количеством элементов с использованием программного пакета ANSYS FLOTRAN показали значительное время расчета ввиду отсутствия возможности проведения параллельных вычислений. Поэтому было принято решение использовать *параллельную версию* программного пакета ANSYS FLUENT [1]. Это позволило на порядок сократить время одного расчета. Для построения сеточной модели использовались средства сеткопостроителя Meshing среды моделирования ANSYS Workbench.

Расчеты нейтронно-физических характеристик и эволюции изотопного состава были проведены с помощью программного комплекса ПРИЗМА+РИСК, разработанного в РФЯЦ-ВНИИТФ [2, 3].

^{[1] –} Инженерный анализ в Ansys Workbench / Бруяка В.А., Фокин В.Г., Солдусова Е.А., Глазунова Н.А., Адеянов И.Е. Самара: Самарский государственный технический университет, 2010. – 271 с.

^{[2] –} Кандиев Я.З. Оценка эффектов малых возмущений в многовариантных расчётах по программе ПРИЗМА-Д / Кандиев Я.З., Малахов А.А. [и др.] // Атомная энергия. – 2005. – Т. 99. – В. 3, С. 203 – 210.

^{[3] –} Модестов Д. Г. Программа решения задач ядерной кинетики РИСК- 2014. Препринт РФЯЦ-ВНИИТФ №243, Снежинск, 2014.

Возможности реализованной динамической модели. Автоматическая перестройка геометрии реактора

В модель заложена возможность автоматического изменения основных геометрических размеров блока реактора.

Возможности реализованной динамической модели. Автоматическая генерация расчетной сетки

Количество разбиений по Количество разбиений по Количество разбиений по окружности - 40 окружности - 80 окружности - 100

Для ускорения процесса построения сеточной модели используются управляющие параметры.

Нейтронно-физические характеристики блока реактора. Часть 1

- состав топливной соли, обеспечивающий критичность блока в течение времени его эксплуатации (10 лет) с учетом запаса реактивности на выгорание: 78FLiNaK + 22UF₄ (% моль). Обогащение по U-235 – 67%;
- при выбранной мощности блока 10 МВт, объеме активной зоны 1 м³, толщине отражателя 0,2 м и времени работы 10 лет запас реактивности на выгорание составил 0,032056 К_{эфф}.

Нейтронно-физические характеристики блока реактора. Часть 2

- для управления реактором толщина поглотителя в стержнях СУЗ должна быть не менее 1,2 см;
- средняя энергия нейтронов в реакторе ~105 КэВ
- эффективная доля запаздывающих нейтронов 0,00751.
- для проведения связанного теплогидравлического расчета активная зона была разбита на 10 частей по высоте и произведен расчет энерговыделения;

Спектр нейтронов АЗ, нормировка на 1

Особенности проведения теплогидравлических расчетов блока реактора

1. Сложность описания процессов переноса тепла за счет естественной конвекции в объеме топливной соли, обусловленная, прежде всего

- значительной турбулизацией потоков жидкости (большие значения числа Рэлея),
- большими градиентами температур между охлаждающей поверхностью (каналы с теплоносителем) и топливной солью (порядка 700 С);

2. Необходимость проведения многовариантных расчетов с целью выбора расчетной сетки, обеспечивающей заданную точность (в основном, сеточное описание пограничных слоев);

3. Выбор модели расчета турбулентности.

Результаты предварительных теплогидравлических расчетов

Стационарный расчет процессов переноса тепла за счет естественной конвекции с использованием пакета ANSYS FLUENT не дал положительных результатов, что, по-видимому, связано со сложность моделирования естественно-конвективных процессов переноса энергии. Добиться сходимости удалось в нестационарном расчете с шагом по времени 0,5 сек первые 5000 сек расчета, в дальнейшем шаг был уменьшен до 0,25 сек.

Проведенный анализ сеточной сходимости позволил определить количество элементов (~2 млн. ячеек), обеспечивающих приемлемую точность расчета.

Выбор модели турбулентности является достаточно сложной задачи и требует дополнительного анализа, однако, многие исследователи конвективных процессов, базируясь на экспериментальных данных и результатах моделирования, утверждают, что наиболее точно естественную конвекцию описывает модель к-ю SST.

Результаты нестационарного теплогидравлического расчета. Выход реактора на стационарный режим работы по температуре

Температура, разрез – максимальная температура в разрезе реактора на уровне середины активной зоны. Температура, реактор – максимальная температура.

Максимальная температура реактора со временем смещается выше середины активной зоны, что связано с всплытием горячих слоев топливной соли за счет гравитационных сил.

Результаты нестационарного теплогидравлического расчета. Поле температур. Часть 1

Результаты нестационарного теплогидравлического расчета. Поле температур. Часть 2

Результаты нестационарного теплогидравлического расчета. Поле скоростей

Максимальные температуры элементов РУ

Элемент реактора	Темп, К	
Стержень с теплоносителем		
Теплоноситель	1170	
Оболочка	1468	
Корпус реактора	1602	
Стержень ПЭЛ		
Борный сердечник	1052	
Гелиевый зазор	1028	
Внутренняя оболочка	1029	
Теплоноситель	1107	
Оболочка	1425	

Элемент реактора	Темп, К
Стержень АЗ	
Борный сердечник	1046
Гелиевый зазор	1046
Внутренняя оболочка	1022
Теплоноситель	1095
Оболочка	1429
Боковой отражатель	1422
Нижний отражатель	954
Верхний отражатель	1223
Топливная соль	1684

ЗАКЛЮЧЕНИЕ

Разработана и реализована согласованная динамическая модель блока реактора в программном модуле ANSYS FLUENT и в программном комплексе ПРИЗМА+РИСК. Внедрен алгоритм движения органов СУЗ.

Динамическая модель позволила провести ряд связанных нейтроннофизических и теплогидравлических расчетов с целью оптимизации характеристик активной зоны.

По результатам нейтронно-физических расчетов:

- достаточно четырех стержней с поглощающим материалом (карбид бора) для контроля критичности и управления блоком;
- показана возможность работы реактора без перегрузок в течение 10 лет;
- сравнительно большая доля запаздывающих нейтронов и малый запас реактивности на выгорание позволит повысить ядерную безопасность системы.

По результатам предварительных теплогидравлических расчетов:

- были получены распределения плотностей, скоростей и температур;
- необходимо ввести в расчетную модель энерговыделение за счет поглощения гамма-квантов в материалах отражателя и поглотителя, теплообмен излучением в гелиевом зазоре.

СПАСИБО ЗА ВНИМАНИЕ

Описание установки

Блочный расплавносолевой реактор с разделение функций производства и передачи энергии представляет собой установку, состоящую из нескольких блоков. Каждый блок – цилиндрический сосуд, заполненный топливной солью. Через него проходят трубки, по которым прокачивается соль-теплоноситель, а в некоторых из них установлены органы регулирования нейтронного потока. Топливная соль – эвтектика FLiNaK с растворенным в ней UF₄. Соль-теплоноситель – FLiNaK.

Установка снабжена нейтронными экранами, которые позволяют производить выемку блока для его замены без остановки реактора. При функционировании всех блоков нейтронные экраны подняты вверх, при необходимости замены блока они опускаются и изолируют его от остальных. Время эксплуатации блока определяется, прежде всего, коррозионной стойкостью выбранных конструкционных материалов. Такая конфигурация реактора с неподвижной топливной солью позволяет сократить количество контуров до двух: первый – соль-теплоноситель, второй – пароводяной (либо газовый).

Примеры РУ с покоящимся топливом. РУ MOSART

Принципиальная cxeмa MOSART

Расчетная модель MOSART

топливной соли

Мольная доля актинидов в топливной загрузке

Методика расчета эффективной доли запаздывающих нейтронов

– определяется масса соли, покидающей АЗ, для каждой группы за среднее время запаздывания.

– рассчитывается разница масс, топливной соли, загруженной в АЗ, и соли, покидающей ее.

– определяется доля запаздывающих нейтронов с учетом движения соли путем умножения доли соответствующей группы на изменение относительной массы топлива. При этом предполагается, что, если ядропредшественник покидает АЗ, то запаздывающий нейтрон уже не сможет внести вклад в поддержание цепной реакции (не учитывалась возможность возврата ядра-предшественника в АЗ после прохождения соли по контуру).