Feasibility of determining spent fuel characteristics from neutron activation analysis

D.G. Modestov, V.A. Simonenko, Y.I. Chernukhin

RFNC-VNIITF

Determination of spent fuel characteritics

Method	Plus	Minus
radiochemistry	accuracy ~ 1%	labor intensive
γ-spectroscopy	fast	influence of γ- background
fork method	fast	influence of γ- background

Neuron activation analysis

Key questions

Does the axial distribution influence measurements?

Can the concentration of actinides be related to neutron intensity?

Calculation of an infinite lattice of fuel assemblies

- Enrichment 4.4%
- Time: 890 effective days (~2.5 years)
- 90 layers over height
- Absorber withdrawal: 0 and 100%
- H₃BO₃ content: 0 and 5 g/kg

Neutron yield from actinide decay

	²³⁸ Pu	²³⁹ Pu	²⁴⁰ Pu	²⁴² Pu	²⁴⁴ Cm
fission, n s ⁻¹ g ⁻¹	2,61.103	0,022	1,02.103	$1,72 \cdot 10^{3}$	1,08.107
α -decay, n s ⁻¹ g ⁻¹	1,33.104	38,2	141	2,09	$7,71 \cdot 10^4$

²³⁹Pu concentration versus intensity measured over different height sections (h = 0%, c_B = 0 g/kg)

Plutonium concentrations versus neutron intensity

VVER-1000 campaign calculation

- Enrichment 1.6, 2.4, 3.6%
- Time: 300 effective days
- Thermal hydraulics
- Boron control of criticality
- No burnable absorber

Fuel column cartogram Block 1 of Volgodonsk NPP

Effect of position in core

²³⁹Pu concentration Enrichment 1.6% ²³⁹Pu concentration Enrichment 2.4%

Average fuel temperature

Average fuel temperature Enrichment 1.6%

Average fuel temperature Enrichment 2.4%

The effect of operating conditions

Boron concentration

Average fuel temperature in FA 82

The effect of operating conditions

²³⁹Pu concentration in FA 82

²³⁹Pu concentration in FA 17 and 82

The effect of loading FA with enrichment 1.6% are replaced by FA with enrichment 3.6%

The effect of loading

Boron concentration

²³⁹Pu concentration in FA 82

The effect of loading

²³⁹Pu concentration in FA 80 ²³⁹Pu concentration in FA 78

Conclusion

- Position in core: ~ 2%
- Operating conditions (upper estimate): ~ 2%; quite realistic → 0

Core loading: highest uncertainty up to 8% it possible to level it?

With the measurement error of about 3-4%, the overall error is optimistically estimated to be ~ 5-6%.