

Институт физики металлов им. М.Н. Михеева Уральского отделения РАН

СТРУКТУРНЫЕ ПРЕВРАЩЕНИЯ В AI-Mg ЦИЛИНДРИЧЕСКИХ ОБОЛОЧКАХ ПРИ НАГРУЖЕНИИ СКОЛЬЗЯЩИМИ ДЕТОНАЦИОННЫМИ ВОЛНАМИ

И.Г. Бродова¹, Е.Б. Смирнов², И.Г. Ширинкина¹, В.В. Астафьев¹, Т.И. Яблонских¹, А.В.Коваль.², А.А.Дегтярев² ¹ Институт физики металлов имени М.Н. Михеева УрО РАН, Россия, г. Екатеринбург, ² РфЯЦ-ВНИИТФ, Россия, г. Снежинск

e-mail:brodova@imp.uran.ru

Ударно-волновое нагружение дает возможность исследовать поведение металлов и сплавов в экстремальных условиях. Изучение особенностей схождения оболочек позволяет исследовать процессы кумуляции ударной волны и высокоскоростной деформации материала. Знание эволюции структуры сплавов даёт возможность прогнозировать пластические и прочностные свойства, а также выявить их механизмы упрочнения и разрушения.

Целью данной работы является исследование влияние условий нагружения при схлопывании цилиндрических алюминиевых оболочек на их структуру и свойства.

Схема нагружения

Нагружение осуществлялось методом скользящей детонации при инициировании накладного заряда ВВ.

Детонационная волна распространялась в зазоре между внутренней поверхности кожуха и наружной поверхности испытуемой цилиндрической оболочки.

Внешний вид оболочек

Разные режимы нагружения оболочек (диаметр 22 мм, толщина стенки - 2 мм) осуществлялись за счёт отличия экспериментальных узлов

Первая оболочка

Слой ВВ - 0.5 мм, слой бумаги -3 мм

Вторая оболочка

Неустойчивое частичное схождение

по радиусу и вдоль оси цилиндра, разрывы, нарушение сплошности

Слой ВВ - 0.5 мм

Взаимодействие ударной волны

Отличие экспериментальных узлов заключалось в

наличие или отсутствии дополнительного слоя на

наружной поверхности оболочки, состоящего из 3 мм

слоя бумаги, а также в изменении толщины слоя ВВ.

наружный диаметр уменьшился до 21,5 мм, и волн разрежения приводит толщина стенки возросла до 2,5 мм, К т.е. относительная радиальная кольцевому отколу деформация составила~ 25%. Наружное кольцо Центральные откольные фрагменты Начало схождения и остановка При деформации схождения- потеря устойчивости, сжатие и разрушение материала

Анализ структуры проведен на трёх поперечных сечениях I, II и III

Структура первой оболочки

Смешанная, частично рекристаллизованная полосовая структура, состоящая из вытянутых вдоль оси оболочки волокон

Поперечное сечение

Продольное сечение

начальная стадия схождения оболочки, на внутренней поверхности формируются и «скользят» друг относительно друга несколько микрослоев (СЭМ).

Чередования структурных зон по радиусу и вдоль оси оболочки не обнаружено, т.е. деформация и температура менялись равномерно.

Микроструктура первой оболочки

Спектр разориентировок границ зёрен

Структура второй оболочки

Влияние ударной волны

Влияние ударной волны и высокоскоростной деформации схождения

Кольцо

Поры, цепочки пор, трещины

Центральные фрагменты

Зоны локализованной деформации

Трещины, вихревое течение материала

Микроструктура внешнего кольца

Распределение зёрен по размерам

Изменение микротвёрдости по радиусу

Неравномерная структура, сокращение числа зёрен < 5 мкм, появление зёрен, способных к быстрому росту

Процессы при ударно-волновом нагружении

Формирование ячеистосубзёренной структуры
Измельчение зерна в 2 раза

Упрочнение материала по сравнению с первой оболочкой ниже на 100 МПа,

т.е. во второй оболочке произошло термическое разупрочнение

Наложение процессов упрочнения и диссипации энергии - переход кинетической в тепловую энергии

Спектр разориентировок зёрен

Misorientation Angle (degrees

Микроструктура центральных фрагментов

Распределение зёрен по размерам

Карты ДОЭ

В сравнении с наружным кольцом: - Увеличение доли МУГ<5°

- уменьшение доли БУГ,
- незначительный рост размера зерна,
- снижение упрочнения

Влияние деформации и температуры

Процессы при высокоскоростной деформационно-термической обработке

- образование развитой сетки МУГ в мелких и крупных зёрнах

Микроструктура центральных фрагментов

Смешанная неравномерная деформированная структура

Зоны локализованной деформации

с рекристаллизованной структурой , d<10 мкм

Карта ДОЭ

полигонизованные зёрна с МУГ 40 <d <100 мкм, HV=1200 МПа

HV=850 МПа

В центре оболочки усиливается влияние температуры –участки литой структуры, t>660° С

Третья оболочка

Слой BB=1 мм + слой бумаги 3 мм После частичного схождения оболочка разрушилась на 10 осколков, которые по инерции продолжают движение к центру.

Дефекты на внешней поверхности оболочки

Деформация в радиальном и в осевом направлениях неравномерная

поперечное сечение ЗА;

поперечное сечение 4С.

Судя по форме, площади и твёрдости осколков произошел их разворот при движении.

Микроструктура третьей оболочки

HV= 1200-1300 МПа

Наложение откольных явлений и высокоскоростной деформации

HV=750-900 Мпа

11

Деформированная структура, полосы локализованной деформаци

Залеченные откольные трещины, более крупное зерно, цольные трещины, зоны плавления и дендритной кристаллизации

Микроструктура фрагментов третьей оболочки

Спектр разориентировок границ зёрен-субзёрен

Неоднородное распределение структуры на мезоуровне

Распределения зёрен по размерам

Процессы, происходящие при схождении оболочки:

-Накопление дислокаций;

-Формирование протяжённой сетки МУГ; -Бимодальное распределение зёрен по размерам Рост среднего размера зерна до 30-40 мкм. 12

Заключение

Рассмотрено влияние трёх режимов нагружения цилиндрических оболочек из Al сплава AMr6 (диаметром 22 мм и толщиной стенки 2 мм) на их структуру и свойства. Показано, что величина подводимой энергии при слое BB=0.5 мм недостаточна для схлопывания оболочки в цилиндр. После начала схождения в оболочке формируется кольцевой откол.

Ослабление мощности подводимой энергии за счёт дополнительного промежуточного слоя бумаги между корпусом и оболочкой приводит к её радиальной деформации, уменьшению диаметра и росту толщины стенок.

При большей энергии взрыва (слой BB=1 мм) происходит разрушение оболочки на осколки разных размеров и форм.

На разных масштабных уровнях установлены особенности структурообразования при инерционном схождении оболочек, и определены деформационнотермические процессы, происходящие при ударно-волновом воздействии.

Показано, что при воздействии скользящими детонационными волнами механизмом деформации AI сплава является дислокационное скольжение, приводящее к накоплению дислокаций, формированию широкой сетки МУГ и развитой субструктуры. Происходит измельчение зерна и упрочнение материала.

Спасибо за внимание!