

ВЛИЯНИЕ РАЗМЕРА ЗЕРНА Al-Mg-Mn СПЛАВА, ПОЛУЧЕННОГО ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИЕЙ, НА ДИНАМИЧЕСКУЮ ПРОЧНОСТЬ

А. Н. Петрова, И. Г. Бродова, С. В. Разоренов,

Е.В.Шорохов

Институт физики металлов УрО РАН имени М.Н. Михеева

Институт проблем химической физики РАН

РФЯЦ – ВНИИТФ

Цель работы: изучить влияние размерного фактора на динамические свойства субмикрокристаллического Al сплава A5083.

Получения СМК алюминиевых сплавов

Динамическое канально-угловое прессование

Материал:

AI-Mg-MN сплав А 5083

2 - образец,

3 - ствол, 4 - матрица

Кручение под высоким давлением в наковальнях Бриджмена

В экспериментах изменялась скорость деформации в зависимости от V

и накопленная деформация в зависимости от N

Образцы диаметром 20 мм и толщиной 1 мм после 1, 5 и 10 оборотов наковальни, что соответствует накопленной деформации 7,0; 8,6; 9,3

Структура сплава после ДКУП

Микро-полосы сдвига

Вытянутые разориентированные ячейки

Крупные нефрагментированные субзёрна размером до 1,5 мкм с повышенной относительно исходного состояния плотностью дислокаций

V=300 м/с

Неравномерный контраст внутри фрагментов структуры свидетельствует о высоком уровне внутренних напряжений

Ультрамелкокристаллическая

Структура сплава после кручения

Твердость 2400 МПа

Твердость 2300 МПа

Твердость 2500 МПа

Ударно-волновое нагружение

Толщина образца ~ 2 мм, 1 мм+экран 1 мм Нагружение ударом плоской алюминиевой пластины толщиной ~ 0.4 мм Скорость деформации 1.6-2 10⁵ с⁻¹

Предел упругости Гюгонио:

$$\sigma_{\text{HEL}} = \rho_0 c_l u_{\text{fsHEL}}/2$$

Откольная прочность:

$$\sigma_{sp} = \rho_0 c_b (\Delta u_{fs} + \delta)/2$$

Динамический предел текучести: Y = σ HEL (1-2 ν)/(1- ν) ν -коэффициент Пуассона

Динамические свойства

Эволюция СМК структуры при ударном сжатии

Структура сплава А5083 после ДКУП <u>N=2</u>

Размер зерен-субзерен – 450 нм

8

ρ_д=8.5 10¹³ 1/м²

Нμ=1200 МПа

Специальные опыты с сохранением образцов – торможение до полной остановки в толстом слое снега

3 – Свободная поверхность

внутренний откол как следствие растягивающих напряжений, возникающих при интерференции падающей и отражённой волн разрежения

Эволюция СМК структуры при ударном сжатии⁹

JOBEPSHOCTE HARPSWEIHUR JOB Image: Constraint of the state of th

Зона разрушения

Свободная поверхность

Размер структурных фрагментов сохраняется - 450-500 нм. $\rho_n = 2.2 \ 10^{14} \ 1/m^2$ $\rho_n = 1.2 \ 10^{14}$

ρ_д**= 1.8 10**¹⁴ **1/м**² Нμ=1400 МПа

Нμ=1500 МПа

ρ_д**= 1.2 10**¹⁴ **1/м**² Hμ=1300 МПа

Исследование разрушения СМК сплава

Объемное изображение сохраненного образца с внутренним разрушением, полученное с помощью рентгеновского томографа.

Изображения сечений образцов, перпендикулярных (*) и параллельных (**) направлению распространения ударной волны

СМК

Свободная поверхность

Поверхность нагружения

Мера поврежденности

Мера поврежденности

Ширина зоны разрушения 16 14 Толщина откольной пластины 12 Пористость, % 10 8 6 4 2 0 0,5 1 1,5 2 2,5 0 Расстояние от поверхности нагружения, мм

Количественные характеристики разрушения

Толщина откольной пластины,

рассчитанная по измеренная по профилю скорости свободной поверхности результатам томографии 600±100 мкм 460 мкм CMK 600±100 мкм 450 мкм

KK

12

Размеры дефектов

Заключение

Рассмотрено влияние величины накопленной деформации при кручении в наковальнях Бриджмена на динамические свойства сплава А5083. Показано, что с ростом деформации наблюдается увеличение всех динамических характеристик - динамического пределов упругости, текучести и откольной прочности.

Исследовано влияние размера зерна на величину динамического предела упругости и текучести и установлено, что измельчение структуры сплава до среднего размера зерен-субзерен порядка 100 нм увеличивает их в 2,3 раза.

Исследовано влияние структурного состояния сплава на откольную прочность и показано, что она зависит не только от размера фрагментов структуры, но и от степени ее дефектности (плотности дислокаций, соотношения малоугловых и большеугловых границ кристаллитов). Так при одном и том же размере зерен 180 нм, образцы после ДКУП имеют более высокую откольную прочность по сравнению с материалом после КВД, что связано с прохождением динамического возврата при ДКУП.

Основным упрочняющим механизмом при ударном сжатии является скольжение дислокаций. По данным ПЭМ и РСА количество дислокаций в объёме материала увеличивается по мере приближения к поверхности разрушения и снижается на свободной поверхности образца.

Для 3D визуализации зон разрушения в СМК и КК сплаве после ударно-волнового нагружения применён неразрушающий метод рентгеновской томографии. Рассчитаны размеры дефектов и пористость на разном расстоянии от поверхности нагружения. Показано, что, несмотря на равенство откольной прочности КК и СМК сплавов после ДКУП, количество дефектов и размеры зоны разрушения у СМК сплава больше.