Дополнительные экспериментальные и расчетно-теоретические результаты в подтверждение гипотезы Е.И.Забабахина об ограниченности кумуляции энергии во фронте сходящихся волн в средах с фазовыми превращениями

> Е.А.Козлов, А.В.Петровцев РФЯЦ-ВНИИТФ им. Е.И.Забабахина

XIII Забабахинские научные чтения, 20-24 марта 2017, Снежинск Челябинской обл.

Сферические эксперименты сохранения

Материаловедческие исследования структуры и свойств материала обжатого образца

Калориметрические измерения приобретенной образцом энергии

Материаловедческие исследования структуры и свойств сохраненных после взрывного нагружения образцов дополняются прецизионным математическим моделированием с учетом реальных свойств материалов

Kozlov, E.A., Study of metals, minerals and meteorites in spherical shock isentropic experiments: Polymorphic and phase transitions, spalls and shears, physical and chemical transformations, in Proceeding of V Zababakhin's Scientific Talks, edited by V.A.Simonenko and B.K.Vodolaga, RFNC-VNIITF, Snezhinsk, Russia, 1999, pp.413-424

Первые эксперименты и расчеты

Сохраненные после обжатия шары Ø184мм. 18мм октоген содержащего ВВ

• Исследовалось влияние на кумуляцию свойств материала (Fe(Ст3), 30ХГСА, 12Х18Н10Т, Cu), размера шаров (Ø64 - Ø184мм), условий нагружения

Эксперимент¹: размеры полости в шарах из сталей с ФП близки при значительной разности прочностных свойств в начальном состоянии, и они существенно больше в шарах из материалов без ФП; увеличение мощности нагрузки приводит к увеличению расплава
Расчет²: изменение структуры сходящейся ударной волны существенно уменьшает кумуляцию энергии на ее фронте при протекании ФП

¹E.A. Kozlov, Experimental verification of E.I.Zababakhin hypothesis concerning limitation of energy cumulation in spherically converging shock-wave front in medium with phase transitions, spalls and shears, physical and chemical transformations, in Shock Compression of Condensed Matter – 1991, S.C.Schmidt et.al. (eds.), Elsevier Publishers B.V., 1992, pp. 169-176. ²E.A.Kozlov, A.V.Zhukov, Phase transitions in spherical stress waves, in High Pressure Science and Technology – 1993, S.C.Schmidt, J.W.Shaner, G.A.Samara, M.Ross (eds.), AIP, New York, 1994, pp. 977-980.

Прецизионное описание свойств Fe и сталей

Разработан учет полиморфных превращений на основе многофазных УРС^{1,2} и модели кинетики превращений³ для учета сильных изменений ударной сжимаемости, влияния их на предельные величины сдвиговых напряжений, характеристики разрушения и диссипацию энергии в материалах
 Построены модели прочностных свойств с учетом деформационного упрочнения, влияния скорости деформации, давления температуры,

изменения фазового состояния и повреждений. Проведена калибровка моделей по результатам многочисленных экспериментов^{4,5}

¹ V.V.Dremov, A,V.Petrovtsev, et al., SCCM-2001, AIP CP#620, pp.87-90

² В.В. Дремов, Г.А.Задорожный, А,В.Петровцев, VII ХНЧ, РФЯЦ-ВНИИЭФ, 2005, р.305-312

³ Г.А.Задорожный, Г.В.Коваленко, А,В.Петровцев, VII ЗНЧ, РФЯЦ-ВНИИТФ, 2003, р.183

4Д.М.Шалковский, Е.А.Козлов, В.И.Таржанов, А. В. Петровцев и др. Х ЗНЧ, РФЯЦ-ВНИИТФ, 2010, с.233

⁵ Д.М.Шалковский, Е.А.Козлов, В.И.Таржанов, А. В. Петровцев и др. XII ЗНЧ, РФЯЦ-ВНИИТФ, 2014, с.235

Общий характер процессов в образце

Эксперимент с шаром Fe диаметром 166 мм:

Детонация слоя ВВ создает «треугольный» импульс нагрузки на наружной поверхности шара
Создающаяся в результате сходящаяся волна имеет многоволновую структуру E₁-P₁-S₁, зависящую от параметров нагрузки. Вещество переводится в высокоплотную ε фазу
Глубоком радиусе – плавление во фронте основной пластической волны S₁

• При отражении от центра S₁→S₂ возникает волна разрежения.

Происходит разгрузка вещества волнах разрежения, движущихся с наружной поверхности и из центра. Вещество переводится в состояние пара, смеси пара и жидкости, γ фазы и, в основной части образца, - α фазы

- Ударные волны разрежения R₁ и R₂ имеют место на участках разгрузки
- Осуществляются процессы образования повреждений при взаимодействии волн разрежения и залечивание повреждений на завершающей стадии остановки системы

¹ Г.В.Коваленко, Е.А.Козлов, А.В.Петровцев. XIII ХНЧ, РФЯЦ-ВНИИЭФ, 2006, с.129-136 ² V.V.Dremov, G.V.Kovalenko, E.A.Kozlov, A.V.Petrovtsev, D.A.Varfolomeev et.al. SCCM-2007, AIP CP 955, 2008, pp.251-254

Многоволновой характер нагрузки

• Изменение в широких пределах состояния материала на Р-Т плоскости

 Многоволновой характер нагружения частиц материала, включая волны сжатия вследствие сферически сходящегося течения и отраженные отцентра волны. ⇒ Квазииэнтропическое сжатие, существенно более низкие температуры частиц (∆Т≈600К при Р^н≈200ГПа), чем на УА.

- Профиль нагрузки влияет на характеристики сжатия образцов
- Основная масса вещества плавится при разгрузке. Для железа начало плавления - Р^н≈180ГПа. Плавление на фронте - Р^н≈200ГПа

¹ Г.В.Коваленко, Е.А.Козлов, А.В.Петровцев. XIII ХНЧ, РФЯЦ-ВНИИЭФ, 2006, с.129-136 ² V.V.Dremov, G.V.Kovalenko, E.A.Kozlov, A.V.Petrovtsev, D.A.Varfolomeev et.al. SCCM-2007, AIP CP 955, 2008, pp.251-254

Сравнение с данными материаловедческих исследований

160

180

120 140

Результаты структурных исследований показывают общую тенденцию изменений по направлению к центру образцов

• Структурные изменения соответствуют возрастанию деформации и температуры частиц железа

 Появляются зоны локальной деформации.
 Степень деформации в них возрастает при приближении к центру. Зоны содержат области рекристаллизованного зерна.

• На определенном радиусе материал полностью рекристаллизован

• Около центральной полости микроструктура соответствует кристаллизации из жидкой фазы

Расчетные данные - дают хорошую базу для интерпретации этой картины:

- Зоны локальной деформации соответствуют зонам залеченных повреждений
- Зоны рекристаллизованного зерна соответствуют областям, в который железо превращалось в ү фазу и затем остывало

Р, ГПа ¹A.V.Dobromyslov, N.I.Taluts, E.A.Kozlov, A.V.Petrovtsev et.al. SCCM-2007, AIP CP 955, 2008, pp.251-254

R, cm

Влияние свойств материала на кумуляцию

Эксперименты с шарами Fe, 30ХГСА, 12Х18Н10Т диаметром 64 мм:

2500

H_{12Kh18N10T}

- В железе и сталях с полиморфными превращениями, особенно 30ХГСА:
- Ярко выражена многоволновая структура
- Сильное затухание в начале схождения стадии схождения
- Более слабая кумуляция

Ē

Материал		Железо	30ХГСА	12X18H10T	
Частица R₀=0.5см	σ _{S1} , ΓΠa T _{S1} , K ΔT _{S1} , K σ _{S2} , ΓΠ T _{S2} , K T ₀ , K	77 996 ≈370 182 1404 700	55 610 ≈290 111 874 526	122 1787 0 257 2406 1098	
Область плавления	R _{sol} , см R _{liq} , см	0.16 0.13	0.052 0.042	0.33 0.25	

• Более низкие амплитуды нагрузки и температуры вещества в центральной области, меньше масса расплава

¹ Г.В.Коваленко, Е.А.Козлов, А.В.Петровцев. VIII ХНЧ, РФЯЦ-ВНИИЭФ, 2006, с.129-136

² E.A.Kozlov, A.V.Petrovtsev, Cumulation of a spherically converging shock wave in metals and its dependence on elastic-plastic properties, phase transitions, spall and shear fractures . J. of Phys.: Conf. Ser. 490 (2014) 012191

Влияние мощности нагрузки на кумуляцию

80	шар диаметром 60 мм	Образец		Ø60	Ø 48
60		Остаточная	Э:	1.016	1.024
S ⁵⁰ ↓ 40 30		Деформация	P:	1.006	1.020
20 10		Область разрушения В. (АВ.) СМ	Э:	1.2 (1.6)	Везде
00	0.5 1 1.5 2 2.5 3 R, cm	30 32 34 36 38 10 42 44 4	P :	1.2-1.7	1.5
80	Шар диаметром 48 мм	Балина зани	2.	4 4 (4 6)	Bease
8 E 60		рекристалл.	3.	0.7(1.85)	Безде
۔ 40		(ΔR _{rc}), см	P:	1.1 0.7	Везде
		Macca	Э:	1.73	32.9
20-		расплавлен- ного железа, М _{liq} ,г	P :	4.1(4.8)	13.7 (37.0)
ĩo	0.5 1 1.5 2 2.5 3 R cm				

 интенсивность деформации существенно выше с протеканием повторной фокусировки полости
 более интенсивные нагрев и фазовые превращения в высокотемпературную γ фазу и жидкость

• более интенсивное разрушение и неполное залечивание повреждений

¹ E.A.Kozlov, A.V.Petrovtsev, G.V.Kovalenko, A.V.Dobromyslov, N.I.Taluts et.al. SCCM-2007, AIP CP 955, 2008, pp.251-254

Калориметрия приобретенной энергии^{1,2}

- На стадии схождения шары из Fe и 30ХГСА приобретают больше энергии
- В дальнейшем Е_{внутр.} в 30ХГСА растет, а Е_{кин} падает вследствие

большей диссипации и малой обратной передаче энергии ПВ

• Расчетные и экспериментальные данные для всех материалов согласуются

¹E.A. Kozlov et. al., SCCM – 1991, S.C.Schmidt et.al. (eds.), Elsevier Publishers B.V., 1992, pp. 859-862

² В.Г.Вильданов, М.М.Горшков, Е.А.Козлов, Д.Т.Юсупов и др., VII ЗНЧ, РФЯЦ-ВНИИТФ, с. 185 (www.vniitf.ru/rig/konfer/7zst/reports/s5/5-35.pdf)

³ E.A. Kozlov, SCCM-1991, S.C.Schmidt et.al. (eds.), Elsevier Publishers B.V., 1992, pp. 169-176

⁴ Г.В.Коваленко, Е.А.Козлов, А.В.Петровцев. VIII ХНЧ, РФЯЦ-ВНИИЭФ, 2006, с.129-136

⁵ E.A.Kozlov, A.V.Petrovtsev, J. of Phys.: Conf. Ser. 490 (2014) 012191

ЛИМ измерения параметров сходящихся волн

• Измерены¹ параметры волн E₁, P₁, S₁ многоволновой конфигурации в слоях различной толщины при изменении мощности квазисферической нагрузки, а также характеристики разрушения

• Данные использованы² для калибровки расчетных моделей описания нагрузки и проверки моделей свойств материала

¹ Е.А.Козлов, С.А.Бричиков, Д.С. Боярников, Д.П.Кучко, А.А.Дегтярев. ФММ,112, №4, 2011, с.412-428 ² Д.М.Шалковский, Е.А.Козлов, А.В.Петровцев, Д.А.Варфоломеев, Н.С.Жиляева и др. Х ЗНЧ, РФЯЦ-ВНИИТФ, 2010, с.233

^ПЛИМ измерения параметров сходящихся волн

Экспериментальные результаты свидетельствуют о:

- многоволновом (E₁, P₁, S₁) характере деформации стали 30ХГСА с ФП,
- более сильной кумуляции на фронте основной волны S₁ в нержавеющей стали 12X18H10T без ФП
- существенном повышении напряжений за фронтом сходящегося упругого предвестника Е₁ на глубоких радиусах
- повышение напряжений на фронте фазового предвестника Р₁ на глубоких радиусах схождения

¹ Е.А.Козлов, С.А.Бричиков, Д.С. Боярников, Д.П.Кучко, А.А.Дегтярев. ФММ,112, №4, 2011, с.412-428

ЛИМ измерения профилей волн для уточнения моделей

- •Проведены ЛИМ измерения профилей волн в стали 30ХГСА в «окнах» из LiF и сапфира для оценки характеристик фаз и фазовых превращений при нагружении и разгрузке в широком диапазоне условий УВ нагружения
- Результаты использованы для уточнения параметров УП моделей фаз и кинетики превращений
- Полученная информация свидетельствует о сильной неравновесности (метастабильности) фазовых превращений в данной стали

¹ А.С.Широбоков, Е.А. Козлов, А.В.Петровцев, Д.М.Шалковский и др. XVII XHЧ, РФЯЦ-ВНИИЭФ, 2015, с.350-360 ² Д.М.Шалковский, А.С.Широбоков, Е.А. Козлов, А.В.Петровцев, А.В.Павленко и др. II Российско-Китайский семинар, РФЯЦ-ВНИИТФ, 2016

³ Д.М.Шалковский, Е.А.Козлов, А.В.Петровцев, Д.А.Варфоломеев, Н.С.Жиляева и др. Х ЗНЧ, РФЯЦ-ВНИИТФ, 2010, с.233

Симметрия и влияние ФП на динамику оболочек

 Зарегистрирована разнодинамичность и симметрия оболочек при схождении до глубоких R; ФП ограничивает рост возмущений
 В тонких оболочках отличие материалов проявляется слабо, и они сходятся безоткольно; при увеличении толщины в оболочках начинает проявляться откольное разрушение, при средней толщине разрушение залечивается при схождении, при большой – происходит отдельное схождение откола, на параметры которого влияет ФП, наблюдаются отличия скорости оболочек

¹ Д.П. Кучко, Е.А. Козлов, С.А. Бричиков и др. XII ЗНЧ, РФЯЦ-ВНИИТФ, 2014, с.206 ² Д.П. Кучко, Е.А. Козлов, С.А. Бричиков и др. XVII ХНЧ, РФЯЦ-ВНИИЭФ, 2015, с.680-690

Материаловедческие исследования

Данные СЭМ [1] для внутренней (слева) и наружной (в центре) поверхностей оболочки из стали 12Х18Н10Т исходной толщиной 3мм после нагружения детонацией слоя октоген-содержащего ВВ толщиной 10мм. Справа – картины в сечении одного из возмущений с разным увеличением

Данные 3D расчетов [2] экспериментов состояния оболочки при t=7мкс. Справа – сравнение с результатами измерений ЛИМ [1]

¹ Е.А.Козлов, А.В.Добромыслов, Н.И.Талуц и др. XII ЗНЧ, РФЯЦ-ВНИИТФ, 2014, с.206 ² Результаты предоставлены авторами работ: А.Ю.Ададуровым, А.А.Брагиным, М.В.Гусевым, Д.В.Кочутиным, В.Н.Ногиным, М.Ю.Сахаровым и А.С.Шнитко, РФЯЦ-ВНИИТФ, 2016

Материаловедческие исследования

Сохраненные оболочки исходной толщиной 10мм, обжатые в чехлах из стали 12X18H10T толщиной 4+7мм при нагружении детонацией слоя ПВВ 5мм без «шубы»

Еще одно подтверждение важности детального учета свойств материалов получено в экспериментах со схождением толстостенных оболочек [1]. Ранее в аналогичной постановке лазерно-интерферометрической методикой были зарегистрированы особенности профилей волн в оболочках. На приведенных на рисунках меридиональных сечениях сохраненных оболочек видно, что особенности профилей волн приводят к отличиям в структуре разрушений оболочек из разных материалов. В соответствии с [1]: три откольных слоя в Fe, два в 12Х18Н10Т и 30ХГСА в состоянии поставки и один в закаленной стали 30ХГСА

¹ Е.А. Козлов, С.А. Бричиков, Д.Г.Панкратов, В.И.Таржанов и др. Х ЗНЧ, РФЯЦ-ВНИИТФ, 2010, с.188 ² М.Ю.Сахаров, А.Ю.Ададуров, Д.М.Шалковский, доклад в секции 1 на данной конференции ³ Д.А.Краснослабодцев, Е.А.Козлов, М.Е.Васильев, В.П.Елсуков, П.Е.Кискин, В.Н.Ногин, доклад в секции 1 на данной конференции

Заключение

• Представлены результаты многолетних экспериментальных и расчетных исследований сферического схождения ударных волн в металлах. Показано, что проявление металлами сложной реологии, обусловленной наличием сдвиговой прочности, а также полиморфных превращений, существенно влияет на характеристики кумуляции напряжений на фронте сходящейся волны, на передаваемую энергии и ее диссипацию в среде.

 Для повышения точности расчетных моделей явления исследования были дополнены лазерно-интеферометрическими исследованиями профилей волн в материалах в плоской и сферической геометрии, а также измерением симметрии сходящихся волн и оболочек в реальных системах, материаловедческими исследованиями сохраненных образцов.

• В продолжение работ могут быть рассмотрены новые методические возможности:

- метод импульсного рентгеноструктурного анализа для определения in situ кинетики полиморфных превращений

 использование профилированного лазерного нагружения и тонкой спектральной диагностики для изучения УРС, величин сдвиговых напряжений и характеристик фазовых превращений и плавления при высоких давлениях
 метод молекулярной динамики для уточнения механизмов высокоскоростной деформации и фазовых превращений

- совмещение многоканальных ЛИМ-диагностик и методов МРТ РГ, а также многокадровой ПГ для изучения процессов в испытываемых системах