Рентгендифракционный анализ алюминида никеля, синтезированного при ударно-волновом нагружении в плоских ампулах сохранения

А.Н. Жуков¹, В.В. Якушев¹, С.Ю. Ананьев², В.В. Добрыгин^{1,3}, А.Ю. Долгобородов^{2,4}

> ¹ИПХФ РАН, г. Черноголовка ²ОИВТ РАН, г. Москва ³ФФХИ МГУ им. Ломоносова, г. Москва ⁴МИФИ г. Москва

> > Снежинск, 2017

Алюминиды никеля

Пять соединений: Al_3Ni_3 , Al_3Ni_2 , AlNi, Al_3Ni_5 и $AlNi_3$.

Ansara I., Dupin N., Lukas H.L., Sundman B. Thermodynamic assessment of the Al–Ni system / J.Alloy.Compd. 247 (1997), p.20.

AlNi: область гомогенности 42,5 – 69,6 ат.% Ni, плавиться конгруэнтно, **температура плавления** 1676 (1638) °C, что **выше** температуры плавления **никеля** (1455 °C)

Алюминид никеля AlNi

Bradley A.J., Taylor A. / Proc. Roy. Soc., London A1 159, p.56, (1937)

Алюминид никеля AlNi

Al + Ni \rightarrow AlNi $\Delta H_{298} = 133.7 \text{ кДж/моль}^1$

- 1. Alexander C.A., Ogden J.S., Risser S.M., Wood Van E. Thermodynamic characterization of NiAl / J. Chem. Thermodynamics, 41, (2009), p.610.
- 2. Большое количество публикаций.
- Gordopolov Yu. A., Batsanov S. S., Trofimov V. S. Shock-Induced Solid–Solid Reactions and Detonations in Shock Wave Science and Technology Reference Library: Heterogeneous Detonation / ed. by F. Zhang — Berlin Heidelberg Springer-Verlag, 2009, p. 287.

Цели работы

- Исследовать реакцию взаимодействия алюминия и никеля инициируемую ударными волнами при составе смесей соответствующем интерметаллиду AlNi с использованием ампул сохранения с плоской схемой нагружения.
- Оценить влияние предварительной механохимической активации смесей и дисперсности исходных никеля и алюминия на полноту и характер реакции.
- Провести сравнение алюминида никеля, полученного в ампулах сохранения, с алюминидом никеля полученным из тех же смесей методом CBC.

Работа выполнена при финансовой поддержке программы фундаментальных исследований Президиума РАН № І.13П «Теплофизика высоких плотностей энергии» и проекта РФФИ № 16-29-01030.

Исходные вещества

микро

нано

Механоактивация в вибрационной мельнице («микро» смесь) Механоактивация в планетарной мельнице («нано» смесь)

Образцы

Образцы готовились из «микро» и «нано» смесей путём прессования в таблетки в стальной прессформе под давлением 0.4 ГПа

Характеристики:	«микро»	«нано»	
Al/Ni, вес. %	31,5/68,5	31,5/68,5	
Диаметр, мм	19,867	19,885	
Толщина, мм	1,380	1,402	
Плотность, г/см ³	4,043	4,024	
Пористость, %	21,7	22,08	
Масса, г	1,729	1,752	

Характеристики таблеток

Ударно-волновое сжатие

Схема экспериментальной сборки

- 1 детонатор,
- 2 генератор плоской ударной волны,
- 3 алюминиевый ударник,
- 4 стальное кольцо,
- 5 база разгона ударника, 9 мм
- 6 медная ампула сохранения,
- 7 образец,
- 8 кольцевые зазоры,
- 9 стальное охранное кольцо,
- 10 стальная подставка.

Скорость ударника, км/с	1.13
Давление, ГПа	13.5

Извлечение и методы исследования

После проведения эксперимента ампулы вскрывались на токарном станке. Сохраненное вещество извлекалось И исследовалось рентгенографическими методами. Исследование образцов проводилось на дифрактометре ДРОН-4, излучение CuK_a, Зависимость интенсивности излучения от угла 20 регистрировалась в диапазоне углов 10 – 165° пошаговым методом, величина шага 0.05°, время счёта на каждом шаге 2 сек. Положение пиков, их интегральная ширина и интенсивность аппроксимацией экспериментальных дифрактограмм определялось суммой дублетных функций Лоренца, учитывающих $\alpha_{1,2}$ расщепление пиков. Фон аппроксимировался многочленом третьей степени. Параметры кристаллических рассчитывались методом наименьших квадратов. Для и микроискажений решёток определения размеров кристаллитов использовался метод Холла-Вильямсона. Поправка на инструментальное линий проводилась по растёртому В уширение порошок монокристаллическому кремнию полупроводникового качества. Количественный фазовый анализ образцов проводился методом Ритвелда.

Внешний вид образцов («нано»)

До ударно-волнового воздействия

После ударно-волнового воздействия

Дифрактограммы образцов («нано»)

2θ

Состав полученного алюминида никеля

	«нано»	«микро»
Параметр ячейки <i>a</i> , Å	2,878(1)	2,8772(5)
Формула	Al _{0.475} Ni _{0.525}	Al _{0.478} Ni _{0.522}

Данные количественного рентгенофазового анализа (метод Ритвелда)

	13.5 ГПа		CBC	
	«нано»	«микро»	«нано»	«микро»
α -Al ₂ O ₃ , Bec.%	9.2(5)	2.3(4)	9.2(5)	4.4(5)

Для обсчёта рентгенограмм использовался программный пакет GSAS. *Larson A. C., Von Dreele R. B.* General Structure Analysis System (GSAS). Los Alamos National Laboratoy Report LAUR 86-748 (2004).

Причины уширения дифракционных пиков

Малые размеры кристаллитов:

$$B = \frac{\lambda}{L\cos(\theta)}$$

- **В** интегральная ширина линии,
- λ длинна волны рентгеновского излучения,
- $\boldsymbol{\theta}$ дифракционный угол,
- L размер области когерентного рассеяния, Å.

Микроискажения:

$$B = 4Stg(\theta)$$

- **В** интегральная ширина линии,
- $\boldsymbol{\theta}$ дифракционный угол,
- **S** микроискажения.

Совместное влияние размеров кристаллитов и микроискажений с учётом инструментального уширения (профиль пиков – функция Лоренца)

$$B_{cor} = B_{exp} - B_{inst} = \frac{\lambda}{L\cos(\theta)} + 4Stg(\theta)$$

 B_{exp} – экспериментальное, B_{inst} – инструментальное и B_{cor} – скорректированное уширения.

Построение прямой
$$\frac{B_{cor}\cos(\theta)}{\lambda} = \frac{1}{L} + 2S\frac{2\sin(\theta)}{\lambda}$$

в координатах
$$\frac{B_{cor}\cos(\theta)}{\lambda}$$
от
$$\frac{2\sin(\theta)}{\lambda}$$

позволяет определить размер кристаллитов L и микроискажения решётки S

Анализ уширения пиков для исходных Ni и Al

	«нано»		«микро»	
	Ni	Al	Ni	Al
Микроискажения <i>S</i> , %	0.02 ± 0.07	0.008 ± 0.003	0.08 ± 0.01	0.073 ± 0.004
Размер кристаллитов <i>L</i> , nm	22 ± 7	>100 - 200	>100 - 200	>100 - 200

Механоактивированная смесь («микро»)

Анализ уширения пиков для AlNi

	«нано»		«микро»	
	13.5 ГПа	CBC	13.5 ГПа	CBC
Микроискажения <i>S</i> , %	0.7 ± 0.2	0.8 ± 0.2	0.6 ± 0.1	0.4 ± 0.1
Размер кристаллитов <i>L</i> , nm	>100 - 200	>100 - 200	>100 - 200	>100 - 200

Выводы

- На основе анализа рентгенограмм сохраненных образцов показано, что при данных условиях эксперимента реакция между никелем и алюминием проходит полностью. При этом, образовавшийся алюминид никеля содержит примесь α-Al₂O₃.
- 2. Измеренные значения параметра решетки показывают, что состав полученного алюминида никеля несколько отличается от эквиатомного.
- 3. Размер кристаллитов образовавшегося NiAl независимо от дисперсности исходной смеси превышает 100 200 нм, а уровень микроискажений весьма велик.
- 4. Рентгенографические характеристики алюминида никеля полученного в ампулах сохранения близки к таковым для алюминида никеля полученного методом CBC.

Спасибо за внимание!