

Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова РАН

Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур РАН

ИССЛЕДОВАНИЕ ЭКСТРЕМАЛЬНЫХ СОСТОЯНИЙ ВЕЩЕСТВА ПРИ ВЫСОКИХ ПЛОТНОСТЯХ ЭНЕРГИИ И ВЫСОКИХ СКОРОСТЯХ ДЕФОРМИРОВАНИЯ С ИСПОЛЬЗОВАНИЕМ МОЩНЫХ ЛАЗЕРОВ

(Доклад посвящен 100-летию со дня рождения лауреата Нобелевской премии А. М. Прохорова)

И.К. Красюк*1, П.П. Пашинин¹, А.Ю. Семенов¹, И.А. Стучебрюхов¹, К.В. Хищенко², В.Е. Фортов²

- ¹ Институт общей физики им. А.М. Прохорова РАН
- ² Объединенный институт высоких температур РАН

*krasyuk@kapella.gpi.ru

XIII Международная конференция «ЗАБАБАХИНСКИЕ НАУЧНЫЕ ЧТЕНИЯ», 20-24 марта 2017 г., РФЯЦ – ВНИИТФ, Снежинск, Челябинская обл., Россия

1916 - 2002

9 июля 2015 г. в Москве был открыт монумент Александру Михайловичу Прохорову – академику, дважды Герою социалистического труда, лауреату Нобелевской премии. Памятник установлен в сквере на пересечении Ленинского и Университетского проспектов.

СОДЕРЖАНИЕ

- 1. Введение
- 2. Генерация термоядерной плазмы в конических мишенях
- 3. Изучение динамической прочности различных материалов при больших скоростях деформирования
 - 3.1. Алюминиевый сплав АМг6М
 - 3.2. Алюминий
 - 3.3. Тантал, медь, свинец
 - 3.4. Синтетический алмаз, графит
 - 3.7. Полиметилметакрилат (ПММА)
 - 4. Зависимость абляционного давления от интенсивности лазерного излучения
 - 5. Откол на лицевой поверхности алюминиевой мишени
 - 6. Заключение

Введение

Начиная с 1977 года, в Институте общей физики им. А.М. Прохорова РАН в сотрудничестве с другими институтами РАН (ОИВТ, ИПХФ, ВЦ, ИТФ) и МФТИ проводятся исследования свойств вещества в экстремальных условиях (высокие температуры, давления и большие скорости деформирования).

С этой целью, в Институте в разное время были созданы уникальные лазерные установки на неодимовом стекле: УМИ-35, Сириус, Камертон и Камертон-Т.

Постоянный интерес и поддержка Нобелевского лауреата, академика А.М. Прохорова способствовали успешному выполнению поставленных задач. В данном сообщении суммированы наиболее важные результаты, полученные в ходе этих исследований.

ИНИЦИАТОРЫ РАБОТ В ИОФ РАН ПО ИССЛЕДОВАНИЮ ФИЗИЧЕСКИХ СВОЙСТВ ВЕЩЕСТВА В ЭКСТРЕМАЛЬНЫХ УСЛОВИЯХ

Исследования свойств вещества в экстремальных условиях в ИОФ РАН более 50 лет тому назад были начаты по инициативе академика В.Е. Фортова и члена-корреспондента РАН П.П. Пашинина и проводились при постоянном внимании и поддержке со стороны академика А.М. Прохорова.

Источник нейтронов на основе конических мишеней

(лазер, взрывные метательные системы)

ЛАЗЕРНАЯ И ВЗРЫВНАЯ ГЕНЕРАЦИЯ ТЕРМОЯДЕРНОЙ ПЛАЗМЫ В КОНИЧЕСКИХ МИШЕНЯХ

ИОФ РАН (1977, 1978) и Филиал ИХФ РАН (Черноголовка, 1980)

1 — драйвер, 2 — плоская или сферическая оболочка мишени, 3 — газообразный дейтерий (0.2 - 1 атм), 4 — свинцовая оболочка.

 $d = 2 \text{ MM}, \quad \alpha = 30, 60^{\circ}$

Вовченко В.И., Гончаров А.С., Касьянов Ю.С. и др. *Письма в ЖЭТФ*, <u>26</u>, № 9, с. 628 (1977).

Микросрезы конических мишеней после лазерного воздействия

Nd- лазер

Энергия: до 70 Дж

Длительность импульса: 22 нс

Оболочка: ПЭТФ 1, 3, 5 мкм

Скорость оболочки: до 150 км/с

Нейтронный выход: до 4x10⁴

Взрывной генератор

Оболочка мишени: Al 30, 250 мкм

Скорость оболочки: 18, 5.4 км/с

Нейтронный выход: до 5x10⁶

Численное моделирование физических процессов в конических мишенях

Зависимости от времени максимальной ионной температуры, рассчитанные по двумерной модели (сплошная линия) и одномерной модели (штриховая линия) и зависимость от времени нейтронного выхода, рассчитанная по двумерной модели (пунктир).

Charakhch'yan A.A., Krasyuk I.K., Pashinin P.P., Semenov A.Yu. *Laser Part. Beams*, **17**, No. 4, p. 749 (1999).

Кумулятивные явления при взаимодействии алюминиевых ударников (скорость 5.4 км/с) с конической полостью в свинце.

- (а) толщина ударника 2 мм,
- (б) толщина ударника 0.25 мм.

Время *t* (нс) отсчитывается от момента подлета ударника к мишени. Штриховыми линиями отмечено положение фронтов ударных волн, стрелками показано направление их движения, штрихпунктирной линией выделена граница зоны разрушения.

Бушман А.В., Красюк И.К., Крюков Б.П. и др. *Письма в ЖТФ*, **14**, № 19, с. 1765 (1988).

Исследование механической прочности алюминиевого сплава АМг6М при больших скоростях деформирования в рамках разработки противометеорной защиты космических аппаратов «Вега-1» и «Вега-2»

Для определения динамической прочности материала использовано явление откола, возникающее при отражении фронта ударной волны от свободной поверхности мишени из исследуемого вещества.

Эксперименты выполнены на лазерных установках на неодимовом стекле "Камертон" и "Сириус" (Институт общей физики РАН).

Основные параметры установки "Камертон": длина волны излучения
0.53 мкм, максимальная энергия в импульсе 100 Дж, длительность

импульса излучения- 2.5 нс.

Основные параметры установки "Сириус": длина волны излучения-1.06 мкм, максимальная энергия в импульсе 60 Дж, длительность импульса излучения- 1.5 нс.

ЭКСПЕРИМЕНТАЛЬНЫЕ ЛАЗЕРНЫЕ УСТАНОВКИ "Камертон" и "Сириус"

(Институт общей физики им. А.М.Прохорова РАН)

Лазерная установка «Камертон-Т» (ИОФ РАН)

Длина волны излучения (вторая гармоника)- 0.527 мкм, максимальная энергия в импульсе до 5 Дж, длительность импульса излучения- 70 пс.

Динамическая прочность исследована на основе анализа откольных явлений при отражении ударной волны от свободной поверхности мишени

Метод определения величин скорости деформирования и откольной прочности

Для определения величин откольной прочности и скорости деформирования материала использован подход, основанный на измерении глубины откольной выемки (кратера) после ударного воздействия на мишень с последующим математическим моделированием ударно-волнового процесса в мишени [1].

Расчеты проводились с помощью численного кода, созданного по схеме типа Куранта–Изаксона–Риса на основе уравнений гидродинамики [2]. В расчетах были использованы широкодиапазонные полуэмпирические уравнения состояния исследуемых материалов [3].

- 1. *R.G. McQueen, D. March*. J. Appl. Phys. 1962. V. 33, № 2. P. 654 665.
- 2. Куликовский А.Г., Погорелов Н.В., Семенов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. М.: ФИЗМАТЛИТ, 2001. 607 с.
- 3. Ломоносов И.В., Фортов В.Е., Хищенко К.В. Хим. Физика, 14. (1), 47 1995.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ ОТКОЛЬНОЙ ПРОЧНОСТИ АЛЮМИНИЕВОГО СПЛАВА АМг6М

154 кбар

187 кбар

247 кбар

Впервые достигнута предельная динамическая прочность исследуемого материала (80 кбар).

В дальнейшем выполнены эксперименты по изучению откольных явлений при больших скоростях деформирования в мишенях из алюминия, тантала, меди, вольфрама, палладия, свинца, синтетического алмаза, графита, кремния и оргстекла (ПММА).

Ниже приведены фотографии тыльных поверхностей мишеней, где происходит откол, полученные с помощью сканирующего электронного микроскопа.

Алюминий (фольга, прокат)

SEI 24kV WD 0mm S\$26 x500 50µm 4957 23 Mar 2013

Синтетический алмаз (поликристалл)

Вольфрам (фольга, прокат)

Алмаз (монокристалл)

Кремний (монокристалл)

Зависимость откольной прочности алюминия от скорости деформирования

Фотографии лицевой и тыльной сторон мишени.

- длительность импульса 1.5 нс P_{max} : 30 \rightarrow 200 кбар
- - длительность импульса 70 пс P_{max} : 30 \rightarrow 50 кбар ¹⁹

Зависимость откольной прочности тантала, меди и свинца от скорости деформирования

Тантал

Свинец

Длительность лазерного импульса 70 пс

Зависимость откольной прочности поли- и монокристаллического синтетического алмаза от скорости деформирования

- 1 поликристаллический алмаз
- 2 монокристаллический алмаз

Зависимость откольной прочности графита от скорости деформирования

Скорость деформирования, 1/с

Откольный

кратер

Зависимость откольной прочности полиметилметакрилата от скорости деформирования

- - длительность импульса 2.5 нс
- ◆ длительность импульса 70 пс

Изучение лазерного абляционного давления на поверхности алюминиевой мишени

На лазерной установке "Камертон-Т" выполнены эксперименты по определению зависимости абляционного давления на поверхности алюминиевой мишени от интенсивности лазерного импульса длительностью 70 пс. Длина волны лазерного излучения 0.527 мкм.

Установлено, что в области интенсивности лазерного излучения 1 – 400 ТВт/см² искомая зависимость имеет вид:

$$P_a(\text{TПa}) = \alpha [10^{-2} I_{\text{лаз}}(\text{ТВт/см}^2)]^{\beta}$$
, где $\alpha = 1.9 \ 0.2$, а $\beta = 0.7 \ 0.03$.

Этот вывод сделан на основе экспериментального измерения времён выхода ударной волны на тыльную поверхность мишеней в зависимости от интенсивности лазерного излучения с последующим определением амплитуды давления на лицевой поверхности мишени методом численного моделирования. В экспериментах использованы мишени из алюминия толщиной от 20 до 200 мкм. Полученный результат находится в удовлетворительном согласии с данными других авторов.

Схема экспериментов и полученные результаты

Рис. 1. Схема измерения времени выхода ударной волны на свободную поверхность: 1 – лазерный импульс, 2 – мишень, 3 – зона откола, 4 – диагностирующий лазерный пучок, 5 – отраженный сигнал, 6- фотодиод, 7 – осциллограф.

Рис. 3. Расчетные номограммы для определения величины абляционного давления на лицевой поверхности мишени по результатам измерения времён выхода ударной волны на тыльную поверхность мишени.

Рис. 2. Осциллограмма отраженного сигнала: синяя стрелка указывает на — момент прихода лазерного импульса на мишень, красная — на момент выхода ударной волны на тыльную поверхность мишени.

Рис. 4. Сравнение полученной зависимости абляционного давления от интенсивности лазерного излучения (красная линия) с аналогичными зависимостями, известными из литературы (линии 2 - 4).

Особенности откольных явлений на лицевой поверхности алюминиевой мишени при лазерном воздействии пикосекундной длительности

Результаты экспериментов

Nº	1	Р	н	h _{exp}	h _{abl}
	TBT/cm ²	Мбар	Мкм	мкм	MKM
1	5.1	2.53	100	23.3	0.171
2	8.2	3.46	1200	32	0.200
3	10.0	3.94	1200	70	0.214
4	14.1	4.96	1200	80	0.240
5	14.3	5.01	1200	70	0.241
6	17.0	5.50	1200	90	0.256

$$P_a = 1.2(10^{-2}I_l)^{2/3} \lambda^{-2/3} \left[A/(2Z) \right]^{3/16}$$

$$h_a = \rho^{-1} (10^{-2} I_l)^{1/3} \lambda^{-1/3} \left[A / (2Z) \right]^{3/32}$$

Здесь P_a (ТПа) — абляционное давление, I_{Λ} (ТВт/см²) — интенсивность лазерного излучения, λ - длина волны лазерного излучения (мкм), A — атомный вес и Z — атомный номер вещества мишени, h_a - толщина абляционного слоя, ρ - плотность материала.

Интерпретация полученных результатов

ЗАКЛЮЧЕНИЕ

- 1. Выполнены уникальные эксперименты по генерации термоядерной плазмы при лазерном и взрывном воздействии на конические мишени.
- 2. Получены новые данные об откольной прочности различных материалов при больших скоростях деформирования.
- 3. Установлена функциональная связь лазерного абляционного давления от интенсивности лазерного импульса.
- 4. Исследовано откольное явление на лицевой поверхности мишени из алюминия.

Спасибо за внимание!