HUGONIOT AND SOUND VELOCITY PRESSURE DEPENDENCE IN SAMPLES OF REACTIVE MIXTURES OF NICKEL AND ALUMINUM POWDERS OF DIFFERENT DISPERSITY

<u>V.V. Yakushev¹</u>, A.V. Utkin¹, A.Yu. Dolgoborodov², S.Yu. Ananev², A.N. Zhukov¹, O.A. Ivashko³

¹The Institute of Problems of Chemical Physics RAS, Chernogolovka, Russia ²Joint Institute for High Temperatures RAS, Moscow, Russia ³Lomonosov Moscow State University, Moscow, Russia

THE AIM OF THE WORK AND THE METHOD OF RESEARCH

Aim of the work:

Investigation of the Ni+Al system capability to react in submicrosecond time scale at shock compression.

Method of research:

Method of overtaking rarefaction wave with the use of laser interferometer VISAR.

SAMPLES

Samples: of nanomixture – on left, of micromixture – on right.

Mixture type	NANO	MICRO
Dispersity	Ni-80 nm; Al-100 nm	Ni-20 µm; Al-2x100 µm
Composition	Ni/Al – 68,5/31,5 wt. %	
Pressing force	8,5 ton/cm ²	$6,5 \text{ ton/cm}^2$
Диаметр	40,2 mm	
Diameter	3-9 mm	
Density	$3,87 \pm 0,02 \text{ g/cm}^3$	
Porosity	25 ± 0,3 %	

EXPERIMENTAL TECHNIQUE

METHOD OF OVERTAKING RAREFACTION WAVE

$$C_{o\delta p} = \frac{HC_{y\partial}D_{y\partial}(D_{o\delta p} - u_{zp})}{HC_{y\partial}D_{y\partial} - h_{y\partial}D_{o\delta p}(C_{y\partial} + u_{zp} + D_{y\partial} - v_{y\partial})}$$

H – thickness of the sample at which rarefaction wave overtakes shock wave,

 D_{ya} – shock wave velocity in flyer,

 $C_{yz}^{\gamma\gamma}$ – sound velocity in flyer at given pressure,

 D_{obp}^{A} – shock wave velocity in sample (found in experiments for Hugoniot measurement),

 u_{rp} – velocity of the boundary flyer-sample,

 v_{ya} – velocity of the flyer.

RESULTS OF EXPERIMENTS AT P = 10 GPA

RESULTS OF EXPERIMENTS AT P = 31 GPA

DISCUSSION OF RESULTS

EVALUATION OF THE ABILITY OF GETTING INTO MELTING AREA

CONCLUSIONS

• It is shown that below melting point (P<31 GPa) sound velocities in shock loaded samples of nano- and microdispersed nickel and aluminum powder mixtures differ markedly which is connected with the difference of mechanical properties of the mixtures.

• Loading parameters for getting into the melting area of both components are evaluated. It can be expected that these conditions will be eliminated the difference in mechanical properties of the mixtures that will create better conditions for the detection of the reaction.