

ПРЕДПРИЯТИЕ ГОСКОРПОРАЦИИ "РОСАТОМ"

ФГУП "ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ АВТОМАТИКИ им. Н.Л.Духова"

ЦЕНТР ФУНДАМЕНТАЛЬНЫХ И ПРИКЛАДНЫХ ИССЛЕДОВАНИЙ ОТДЕЛ КОМПЬЮТЕРНОГО МАТЕРИАЛОВЕДЕНИЯ

Первопринципные расчёты свойств урана методами псевдопотенциала и APW

Мигдал К.П.*,* А.В. Янилкин

ФГУП «ВНИИА им. Н.Л. Духова»

2017 г.

I. План доклада

- Цель исследования
- Вычислительные методы
- Фазы урана при Т=0
- Тепловые эффекты в сжатом уране
- Заключение

II. Цель исследования

Фазовая диаграмма U: P<100 GPa

Фазовая диаграмма U: P>100 GPa

T=0

S. Adak et al, Physica B. 433. 133. 2013

M. Penicaud, J.Phys.: Cond. Matt. 14. 3575. 2002

<u>Фазовая диаграмма: Стабильные структуры</u>

T=0

T=500K

R.Q. Hood et al, Phys. Rev. B. 78. 024116. 2008

SCAILD — коррекция DFT спектра

P. Soderlind, Phys. Rev. B. 85. 060301. 2012

Холодная кривая уU: тест подходов

<u>ftp://ftp.abinit.org/pub/abinitio/Psps/LDA_TM.psps/92/92u.pspnc</u> <u>ftp://ftp.abinit.org/pub/abinitio/Psps/GGA_FHI/92-U.GGA.fhi</u>

Выводы по опубликованным данным:

 Есть расхождения между свойствами сильно сжатого урана, предсказанными методом псевдопотенциала и полноэлектронными расчётами;
Основная часть ланных относится к свойствам урана

Основная часть данных относится к свойствам урана при давлении до 100 ГПа.

1) Проверка точности DFT расчётов методом псевдопотенциала с помощью полноэлектронных подходов.

2) Исследование параметров стабильного урана при холодном сжатии при давлении до 1 Тпа

3) Получение оценки точности расчёта тепловых вкладов в термодинамические потенциалы урана, включая вклад нагрева электронов

исследования:

Есть расхождения между свойствами сильно сжатого урана, предсказанными методом псевдопотенциала и полноэлектронными расчётами;
Основная часть данных относится к свойствам урана при давлении до 100 ГПа.

1) Проверка точности DFT расчётов методом псевдопотенциала с помощью полноэлектронных подходов.

2) Исследование параметров стабильного урана при холодном сжатии при давлении до 1 Тпа

3) Получение оценки точности расчёта тепловых вкладов в термодинамические потенциалы урана, включая вклад нагрева электронов

исследования:

 Есть расхождения между свойствами сильно сжатого урана, предсказанными методом псевдопотенциала и полноэлектронными расчётами;
Основная часть данных относится к свойствам урана при давлении до 100 ГПа.

1) Проверка точности DFT расчётов методом псевдопотенциала с помощью полноэлектронных подходов.

2) Исследование параметров стабильного урана при холодном сжатии при давлении до 1 ТПа.

3) Получение оценки точности расчёта тепловых вкладов в термодинамические потенциалы урана, включая вклад нагрева электронов

исследования:

 Есть расхождения между свойствами сильно сжатого урана, предсказанными методом псевдопотенциала и полноэлектронными расчётами;
Основная часть данных относится к свойствам урана при давлении до 100 ГПа.

1) Проверка точности DFT расчётов методом псевдопотенциала с помощью полноэлектронных подходов.

2) Исследование параметров стабильного урана при холодном сжатии при давлении до 1 ТПа.

3) Получение оценки точности расчёта тепловых вкладов в термодинамические потенциалы урана, включая вклад нагрева электронов

III. Вычислительные методы

Подходы в рамках МФП

<u>Псевдопотенциалы</u>

(NCPP, USPP, PAW)

<u>Полноэлектронные</u>

(APW,LMTO,LAPW, GTO,**APW+lo**)

<u>Параметры псевдопотенциального расчёта</u>

b-initio Sackage imulation

Представление электронной структуры	PAW	
Обменно-корреляционный функционал	PBE	
Вычислительный код	VASP	
Число атомов в ячейке (α/ОЦТ/γ)	4/2/1	
Структура валентных электронных	6s ² 6p ⁶ 6d ¹ 7s ² 5f ³	
уровней		
Радиус области кора, а _в	2.2	
Обрезание по импульсу базиса плоских	500 эВ	
волн		
Сетка точек Монхорста-Пэка	11×11×11	

* G. Kresse *et al*, Comput. Mater. Sci. 6. 15. 1996

* G. Kresse *et al,* Phys. Rev. B. 59. 1758. 1999.

Параметры полноэлектронного расчёта

WIEN2k

Представление электронной структуры	APW+lo
Обменно-корреляционный функционал	PBE
Вычислительный код	Wien2K
Число атомов в ячейке (α/ОЦТ/γ)	4/2/1
Структура валентных электронных	$5d^{10}6s^{2}6p^{6}6d^{1}7s^{2}5f^{3}$
уровней	
Радиус области кора, а _в	2.1 (1.9, ρ > 26
	г/см ³)
Обрезание по импульсу базиса плоских	11
волн	
Сетка точек Монхорста-Пэка	20×20×20

Тестирование APW+lo и LAPW подходов

IV. Результаты

Холодная кривая уU: P<100 ГПа

M. Penicaud, J.Phys.: Cond. Matt. 14. 3575. 2002

18

IV

<u>Холодная кривая уU: Р ~ 1 ТПа</u>

19

81554

IV

<u>Параметры стабильного αU при T=0 K</u>

VASP:

Плотность, Γ/cm^3	a, Å	$b, \mathrm{\AA}$	$c, \mathrm{\AA}$	2Y
18.4	2.8735	6.0268	4.9515	0.1961
20.1	2.7387	5.8691	4.8954	0.1977
24.1	2.5806	5.3978	4.7098	0.2021
29.3	2.4467	4.9111	4.4941	0.2093
36.0	2.3050	4.5397	4.1960	0.2270
40.1	2.2402	4.3703	4.0212	0.2419

E(WIEN2K)-E(VASP):

Плотность, г/см 3	Направление деформации	Изменение энергии,
		мэВ/атом
18.4	$(11\bar{1})$	-1.1
20.1	$(1\bar{1}\bar{1})$	-20.9
24.1	$(10\bar{1})$	-16.4
29.3	(111)	-2.7
36.0	$(01\bar{1})$	-5.1
40.1	$(01\bar{1})$	-1.5

<u>Холодная кривая αU</u>

<u>Параметры стабильного ОЦТ U при T=0 К</u>

22

R.Q. Hood et al, Phys. Rev. B. 78. 024116. 2008

Переход между α и ОЦТ ураном

25

R.Q. Hood et al, Phys. Rev. B. 78. 024116. 2008

IV

<u>Итоговая холодная кривая урана при P<1 ТПа</u>

IV

Соответствие энергий и сил

 $E_A^{(a)} - E_B^{(a)} = -\int\limits_{A \to B} \vec{F}^{(a)} d\vec{\tau}_{A \to B}$

25

81554

<u>Тепловые эффекты в ү-U при T<5000 К</u>

26

IV

<u>Тепловые эффекты в ү-U при T<5000 К</u>

Эффект электронного нагрева при T<5000 К

28

IV

Оценка расхождения тепловой энергии

$$F - F_0 \approx \left\langle U - U_0 \right\rangle_i - \frac{1}{2k_B T} \left\langle \left(U - U_0 - \left\langle U - U_0 \right\rangle_i \right)^2 \right\rangle_i$$

$$F_{FE}^{(c)} - F_{psp}^{(c)} \approx \left\langle U_{FE}^{(c)} - U_{FE}^{(c)} \right\rangle_{i} - \frac{1}{2k_{B}T} \left\langle \left(U_{FE}^{(c)} - U_{FE}^{(c)} - \left\langle U_{FE}^{(c)} - U_{FE}^{(c)} \right\rangle_{i} \right)^{2} \right\rangle_{i}$$

Т, К	ΔE_1 , мэВ/атом	ΔЕ ₅₄ , мэВ/атом
1500	6(-0.05)	17(-0.05)
5000	-5(-0.015)	11(-0.015)

Выводы

 Метод функционала плотности позволяет дать количественное описание фазовой диаграммы твёрдого урана при сжатии до 1ТПа, если заранее известны фазыкандидаты:

α-ОЦТ переход при 280 ГПа, стабильность ОЦТ при Р<1 ТПа

 Результаты псевдопотенциальных расчётов, использованных для разработки фазовой диаграммы урана, подтверждаются полноэлектронными вычислениями: холодные кривые, энергии Фаз, путь Бейна, соответствие сил, свободная энергия, электронная внутренняя энергия

Спасибо за внимание!

