

ПРЕДПРИЯТИЕ ГОСКОРПОРАЦИИ "РОСАТОМ"

ФГУП "ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ АВТОМАТИКИ им. Н.Л.Духова" CENTER OF FUNDAMENTAL AND APPLIED RESEARCH COMPUTENTIAL MATERIALS SCIENCE

First-principles calculations of uranium properties using pseudopotential and APW methods

K.P. Migdal, A.V. Yanilkin Dukhov Research Institute of Automatics

2017

I. Outline

- Motivation
- Methods
- Uranium at T=0K
- Thermal effects in compressed uranium
- Conclusions

II. Motivation

Uranium polymorph transition at P<100 GPa

Phase diagram of uranium at P>100 GPa

T=0

S. Adak et al, Physica B. 433. 133. 2013

M. Penicaud, J.Phys.: Cond. Matt. 14. 3575. 2002

Phase diagram: Stable structure analysis

T=0

T=500K

Equilibrium volume Vexp=20.75 A³

R.Q. Hood et al, Phys. Rev. B. 78. 024116. 2008

P. Soderlind, Phys. Rev. B. 85. 060301. 2012

improvement of DFT

phonon spectra

OK isotherm of yU: test of different approaches

ftp://ftp.abinit.org/pub/abinitio/Psps/LDA_TM.psps/92/92u.pspnc ftp://ftp.abinit.org/pub/abinitio/Psps/GGA_FHI/92-U.GGA.fhi

Resume for already published data:

The difference between data obtained using pseudopotential and full-electron methods are found in some researches;

The main part of published articles dedicated to uranium at pressure < 100 GPa.</p>

1) To check pseudopotential DFT calculations using full electron methods.

2) To investigate lattice parameters of stable uranium at the pressures up to 1 TPa.

Resume for already published data and main

goals:

- The difference between data obtained using pseudopotential and full-electron methods are found in some researches;
- The main part of published articles dedicated to uranium at pressure < 100 GPa.

1) To check pseudopotential DFT calculations using full electron methods.

2) To investigate lattice parameters of stable uranium at the pressures up to 1 TPa.

Resume for already published data and main

goals:

The difference between data obtained using pseudopotential and full-electron methods are found in some researches;

The main part of published articles dedicated to uranium at pressure < 100 GPa.

1) To check pseudopotential DFT calculations using full electron methods.

2) To investigate lattice parameters of stable uranium at the pressures up to 1 TPa.

Resume for already published data and main

goals:

The difference between data obtained using pseudopotential and full-electron methods are found in some researches;

The main part of published articles dedicated to uranium at pressure < 100 GPa.

1) To check pseudopotential DFT calculations using full electron methods.

2) To investigate lattice parameters of stable uranium at the pressures up to 1 TPa.

III. Calculation methods

Main approaches in DFT

- <u>Pseudopotentials</u>
- (NCPP, USPP, **PAW**)

- <u>Full-electron methods</u>
- (APW,LMTO,LAPW,
- GTO,APW+lo)

Parameters of pseudopotential calculation

		Electron basis	PAW
	b-initio	xc-functional	PBE
	Reckage	Used package	VASP
		Number of atoms in the cell (α /OLT/ γ)	4/2/1
i	enna <i>imulation</i>	Valence bands	6s ² 6p ⁶ 6d ¹ 7s ² 5f ³
		Core electrons radius, a _B	2.2
		Cutoff energy	500 eV
		Monkhorst-Pack grid	11×11×11

* G. Kresse *et al*, Comput. Mater. Sci. 6. 15. 1996

* G. Kresse *et al,* Phys. Rev. B. 59. 1758. 1999.

Parameters of full-electron calculation

TE
N
2k

WIEN2k

Electron basis	APW+lo
xc-functional	PBE
Used package	Wien2K
Number of atoms in the cell (α /OЦT/ γ)	4/2/1
Valence bands	5d ¹⁰ 6s ² 6p ⁶ 6d ¹ 7s ² 5f ³
Core electrons radius, a_{B}	2.1 (1.9, ρ > 26
	g/cc)
Cutoff energy	11
Monkhorst-Pack grid	20×20×20

Tests of APW+lo and LAPW approaches

IV. Results

<u>0 K isotherm of yU at P<100 GPa</u>

M. Penicaud, J.Phys.: Cond. Matt. 14. 3575. 2002

18

O K isotherm of yU at P ~ 1 TPa

19

ВНИИА

Lattice parameters of stable αU at T=0 K

VASP:				
Density, g/cc	a, Å	$b, \mathrm{\AA}$	$c, \mathrm{\AA}$	2Y
18.4	2.8735	6.0268	4.9515	0.1961
20.1	2.7387	5.8691	4.8954	0.1977
24.1	2.5806	5.3978	4.7098	0.2021
29.3	2.4467	4.9111	4.4941	0.2093
36.0	2.3050	4.5397	4.1960	0.2270
40.1	2.2402	4.3703	4.0212	0.2419

E(WIEN2K)-E(VASP):

Density, g/cc	Deformation vector	Energy lowering, , , meV/atom
18.4	(111)	-1.1
20.1	$(1\bar{1}\bar{1})$	-20.9
24.1	$(10\bar{1})$	-16.4
29.3	$(1\bar{1}1)$	-2.7
36.0	$(01\bar{1})$	-5.1
40.1	$(01\bar{1})$	-1.5

<u>0 K isotherm of αU</u>

Lattice parameters of stable bct U at T=0 K

22

R.Q. Hood et al, Phys. Rev. B. 78. 024116. 2008

<u>α-bct polymorph transition</u>

R.Q. Hood et al, Phys. Rev. B. 78. 024116. 2008

Total OK isotherm of U at P<1 TPa

Accordance of forces and energies

<u>Thermal effects in γ-U at T<5000 K</u>

26

<u>Thermal effects in γ-U at T<5000 K</u>

Hot electrons contribution at T<5000 K

Accuracy of free energy calculation at T < 5000K

$$F - F_0 \approx \left\langle U - U_0 \right\rangle_i - \frac{1}{2k_B T} \left\langle \left(U - U_0 - \left\langle U - U_0 \right\rangle_i \right)^2 \right\rangle_i$$

$$F_{FE}^{(c)} - F_{psp}^{(c)} \approx \left\langle U_{FE}^{(c)} - U_{FE}^{(c)} \right\rangle_{i} - \frac{1}{2k_{B}T} \left\langle \left(U_{FE}^{(c)} - U_{FE}^{(c)} - \left\langle U_{FE}^{(c)} - U_{FE}^{(c)} \right\rangle_{i} \right)^{2} \right\rangle_{i}$$

Т, К	ΔE_1 , meV/atom	ΔE_{54} , meV/atom
1500	6(-0.05)	17(-0.05)
5000	-5(-0.015)	11(-0.015)

Conclusions

 Using DFT we obtained quantitative description of uranium phase diagram at compressions P < 1 TPa for known candidates between lattice types:

 α -bct polymorph transition at 280 GPa, bct-U is stable at P<1 TPa

 The results of pseudopotential calculation are in good agreement with the presented data of full-electron approach:
O K isotherms, total energies for different lattices, Bain path,

forces, electron thermal energies

Thank you for your kind attention!

