

О численных и физических неустойчивостях, возникающих в гидродинамических расчётах радиативно охлаждающихся ударных волн

<u>Д.А. Бадьин</u>,^{1,} С.И. Глазырин, ^{1,2,3} К.В. Мануковский, ² С.И. Блинников^{1,2,4}

¹ ФГУП ВНИИА, ²ИТЭФ, ³ НИЯУ МИФИ, ⁴Kavli IPMU

Предмет исследования

Остаток сверхновой на момент перехода от адиабатического охлаждения в режим <u>объёмных</u> лучистых потерь $t_{\rm rad} \ll t_{\rm ad}$.

$$\partial_t(\rho e) + \partial_i(\rho v_i e) + p \partial_i v_i = |-\Lambda(T) n_e n_H|$$
 (1)

 $\Lambda(T)$ – нелинейная функция радиативного охлаждения.

Тепловая неустойчивость:
$$\dot{e}_{\rm loss} \sim \Lambda(T) \rho^2$$

 $T \downarrow, \Lambda(T) \uparrow \Rightarrow$
 $\dot{e}_{\rm loss} \uparrow, \gamma_{\rm eff} \downarrow, \rho \uparrow \Rightarrow \dot{e}_{\rm loss}, \ \rho \ \uparrow\uparrow ...$

Схлопывание в холодный плотный слой, T – из условия $t_{\mathrm{rad}}\gtrsim t_{\mathrm{ad}},\sim$ изотерм.

Предмет исследования

Одномерие: сжатие до 10⁴, интенсивное высвечивание кин. энергии ?? Устойчивость в многомерии? Ограничение на сжатие и диссипацию.

Методы:

- З методики: FRONT3D (MUSCLE+HLLC), FLASH (PPM + TwoShock/HLLE+ <u>AMR</u>), PLUTO (TS/HLL + RK3)
- чистая гидродинамика (без магнитных полей)
- Одно- и многомерные задачи на различных масштабах (5-50 пк)

3

 Изгибы и фрагментация за счёт физических и численных неустойчивостей, что м.б. важно для многомерной Рад.ГД или течений с реакциями

Статья: D.A. Badjin, S.I. Glazyrin, K.V. Manukovskiy, S.I. Blinnikov, *MNRAS*, 2016, **459**, 2188-2211

Функции охлаждения: $\dot{E}=-n_{ m H}^2\Lambda$

- ► Аналитическая, чистый H (Straka, 1974) $\Lambda_S = A\sqrt{T} + B \cdot 10^{-2(\log(T/T_0))^2}$,
- Табличная (атомный код CLOUDY) Λ_T.
- ► Λ_{CT} , т.е. Λ_T , подавленная в области T < 3000 К для имитации рекомбинации: $n_{
 m H}^2 \Lambda_{CT} \equiv n_e n_{
 m H} \Lambda_T$

Прочие параметры ...

Mod. name	$Grid^{a}$	R_{\max}^{b}	R_0^c	E_0^d	$\rho_0^{\ e}$	γ	Λ	Code
		\mathbf{pc}	\mathbf{pc}	foe or foe pc ⁻¹	$m_{\rm p}~{\rm cm}^{-3}$			
E1S-S400	1D spherical 400	50	2	1.28	1	5/3	Straka	FRONT3D
E1T-S1600	1D spherical 1600	100	2	1.28	1	5/3	Table	FRONT3D
E1S-RZ1600	$RZ \ 1600^2$	50	2	1.28	1	5/3	Straka	FRONT3D
E1T-RZ9	$RZ 512^2$	50	2	1.28	1	5/3	Table	FRONT3D
E2T-XY9	$XY 512^{2}$	80	2	0.48L	1	5/3	Table	FRONT3D
E3T-C18	1D cylindrical 2 ¹⁸	50	2	0.087L	1	5/3	Table	FRONT3D
E3TC-C18	1D cylindrical 2 ¹⁸	50	2	0.087L	1	5/3	Cut Table	FRONT3D
E3T-C19A	1D cylindrical A2 ¹⁹	50	2	0.087L	1	5/3	Table	FLASH4.2
E3TC-C19A	1D cylindrical A2 ¹⁹	50	2	0.087L	1	5/3	Table	FLASH4.2
$E3TC-C19AP^{f}$	1D cylindrical A2 ¹⁹	50	0.002	0.087L	1	5/3	Table	FLASH4.2
E3S-XY9	$XY 512^{2}$	80	2	0.087L	1	5/3	Straka	FRONT3D
E3T-XY9	$XY 512^{2}$	80	2	0.087L	1	5/3	Table	FRONT3D
E3TC-XY11	$XY \ 2048^2$	50	2	0.087L	1	5/3	Cut Table	FRONT3D
E3T-Rph8	$R\varphi 256_R \times 128_{\varphi}$	80	2	0.087L	1	5/3	Table	FRONT3D
E4S-XY8	$XY \ 256^2$	10	0.0137	3×10^{-5} L	1	5/3	Straka	PLUTO4.1
E4F-XY8	$XY \ 256^2$	10	0.0137	3×10^{-5} L	1	5/3	Free-free	PLUTO4.1
E4T-XY10	$XY \ 1024^2$	5	0.0137	3×10^{-5} L	1	5/3	Table	FRONT3D
E4S-XY9A	$XY \ A512^2$	5	0.137	$3 \times 10^{-5} L$	1	5/3	Straka	FLASH4.2
E4T-XY9A	$XY A512^2$	5	0.137	3×10^{-5} L	1	5/3	Table	FLASH4.2
E4T-XY12A	$XY \text{ A}4096^2$	3	0.137	$3 \times 10^{-5} L$	1	5/3	Table	FLASH4.2
E4T-C12	1D cylindrical 2 ¹²	5	0.0137	3×10^{-5} L	1	5/3	Table	FRONT3D
E4S-Rph8A	$R\varphi A256_R \times 256_{\varphi}$	5	0.137	3×10^{-5} L	1	5/3	Straka	FLASH4.2
E4T-Rph8A	$R\varphi A256_R \times 256_{\varphi}$	5	0.137	3×10^{-5} L	1	5/3	Table	FLASH4.2
$E4T-Rph12AD^{g}$	$R\varphi A2_R^{12} \times 2_{\varphi}^{12}$	3	0.137	3×10^{-5} L	1	5/3	Table	FLASH4.2
E5T-XY9A	XY $A512^{2}$	3	0.137	$5 \times 10^{-5} L$	10	1.4	Table	FLASH4.2
E5T-Rph8A	$R\varphi \text{ A256}_R \times 256_\varphi$	3	0.137	5×10^{-5} L	10	1.4	Table	FLASH4.2
E6F-XY9	$XY 512^{2}$	50	0.684	1.3×10^{-3} L	1	5/3	Free-free	PLUTO4.1

Иллюстрация ...

• Kim & Ostriker (2015) 3D, грубые XYZ сетки (256³)

Наши расчёты:

- \bullet RZ-осевая симметрия, 1.28 foe 1 , 50 пк, 1 m_p см $^{-3}$, табличная Λ
- \bullet *ХҮ*-плоская симетрия, 3 imes 10 $^{-5}$ foe/пк, 5 пк, 1 m_p см $^{-3}$,

Распад в двумерии

Известные эффекты: неустойчивости Вишняка?

1. Сверхустойчивость (линейная) тонкого слоя, движимого давлением (*Pressure Driven Thin Shell Overstability* – Vishniac (1983), Vishniac & Ryu (1989))

- 'Движимый давлением'? Не всегда:
 М.б. и инерционный разлёт
- 'Сверхустойчивость'? Нет:
 Постоянный рост до насыщения
- 'Линейность'? Нет: Толщина слоя и масштаб шумовых возмущений одного порядка

Известные эффекты: неустойчивости Вишняка?

2. Нелинейные неустойчивости тонкого слоя (ННТС)

между двумя УВ при столкновениях потоков (Non-linear Thin Shell Instability, Non-linear Deceleration Instability – Vishniac (1994), Blondin & Marks (1996), McLeod & Whitworth (2013))

Особенности нашей задачи:

Асимметрия потоков; Не всегда разрешается обратная УВ; Изгибы поверхностей нескоррелированы; Рэлей-тейлоровские 'грибы' ...

Очевидно также Нет.

Вопрос: физичен ли эффект или это численный артефакт наподобие неустойчивостей 'карбункул', 'odd-even' и т.п.?

- Резкий провал в давлении распад течения на фракции
- Фракции сталкиваются транзиентное ускорение
- Восстановление динамического баланса
- Физическая неустойчивость: катастрофическое охлаждение
- ! численный эффект: распад на несколько 'под-оболочек' вызванный шумами адаптации,

'эхо'-артефакты начального состояния

Восстановление баланса – пульсации

Квазистационарная структура

! Зависимость от низкотемпературной Λ (ожидаемо)

! Тонкая структура: 1 плотный слой + 2 переходных зоны охлаждения

! Потенциально неустойчивая конфигурация

Выяснение сущности 2D-эффекта

2D-XY, Широкая область, грубая сетка: структура не разрешена

² Неустойчивость Ускоряемого Радиативного Тонкого Слоя

Выяснение сущности эффекта

2D-XY, Малый масштаб, мелкая сетка: структура видна

РТПП³ – разрушение головной поверхности TC.

(В разгоняющейся РУВ неустойчивой будет задняя поверхность)

Сильная чувствительность к шумам на декартовых сетках,

на полярных - нет.

³Рэлей-Тейлоровская неустойчивость передней поверхности

2D полярная подробная сетка + физические флуктуации

РТПП+ННТС, но вероятнее -

только РТПП.

2D-полярная подробная сетка + физические флуктуации

ННТС – только самые ранние стадии (до отрыва обратной УВ), требует специфической расстановки возмущений⁴.

Основной итог

Физические эффекты:

- РТПП наиболее общий и вероятный сценарий
- ННТС мало возможностей для эффективного возбуждения

Численные эффекты:

- 'Карбункул' вблизи осей с чистым HLLC
- Возбуждение неустойчивостей численными шумами на декартовых сетках

Полу-численные полу-физические:

 НУРТС (только на грубом разрешении, однако наиболее вероятно в многомерных крупномасштабных расчётах)

Можно ли что-то добавить?

Да. Обойти ограничения:

- Учесть магнитное давление (сильный стабилизирующий эффект)
- Самосогласованная низкотемпературная кинетика ионизации и охлаждения
- и согласовать с (неидеальной) МГД ...

Эффект магнитных полей

Статья: Petruk O., Kuzyo T., Beshley V., 2016, MNRAS, 456, 2343

Поля препятствуют сжатию \Rightarrow снижается темп потерь (выше γ_{eff}) (однако, авторы пренебрегали Λ уже при $T < 10^4$ K) Но поля тоже флуктуируют \Rightarrow какие-то изгибы сохранятся.

Эффекты кинетики

Пусть поле слабое, сжатие – сильно \Rightarrow 'стенка' нейтралов внутри разреженной плазмы.

- Нейтралы не чувствуют полей только прямые столкновения.
- Темп столкновений ~ темп охлаждения (родственные процессы). Пробег ~ Δu · t_{cool}.
- Проникновение в зону охлаждения или внешнюю среду, обмен импульсом – новые неустойчивости?

? Корректный выбор моделей. Работа продолжается

Спасибо за внимание!

Вопросы и обсуждение приветствуются

