Российский Федеральный Ядерный Центр – Всероссийский НИИ технической физики имени академика Е.И. Забабахина

Поглощение лазерного излучения в короне мишеней с прямым воздействием для российской установки мегаджоульного класса

И.А. Химич^{1,2}, В.А. Лыков¹

¹ФГУП РФЯЦ-ВНИИТФ имени академика Е.И.Забабахина, Снежинск, РФ. ²СФТИ НИЯУ МИФИ, Снежинск, РФ.

РФЯЦ-ВНИИТФ

Содержание

- Введение
- Расчет поглощенной энергии:
 - модель с учетом рефракции лазерного излучения
 - влияние оптической толщины на однородность поглощенной энергии
 - положение кластеров на мешенной камере
- Неоднородность поглощенной энергии
- Сравнение однородности поглощенной энергии при *f/D*=4 и *f/D*=8
- Заключение

Введение

- Конфигурация установки предполагает расположение кластеров в симметрии куба[1].
- Рассматриваются:
 изотермическая ког

изотермическая корона коническое схождение пучка, профили эл. концентрации задается аналитически, положение кластеров пучков в симметрии куба, разбаланс в мощностях пучков.

1. С.Г. Гаранин, С.А. Бельков, С.В. Бондаренко. Концепция построения лазерной установки XXXIX Международная (Звенигородская) конференция по физике плазмы и УТС, 6 – 10 февраля 2012 г.

Модель

Расчет поглощения лазерного излучения проводился в приближении геометрической оптики для плотности электронов $n_e = n_c (r_c/r)^m$,где $n_c = (4\pi e^2)/(m_e \omega_0^2)$. Траектория лучей задается формулой [2]:

$$\theta(r) = \gamma + \int_{r}^{K} \frac{pdr'}{r'\sqrt{(nr')^2 - p^2}}$$

А оптическая толщина:

$$\tau(r) = \int_{r}^{R} \frac{k dr'}{\sqrt{1 - p^2/(nr')^2}}$$

2. В.Л. Гинзбург. Распространение электромагнитных волн в плазме. М.: Физматлит, 1960

- Лазерное излучение рассматриваем как пучок лучей. Из него последовательно выбираются 3 луча. Два крайних из них образуют лучевую трубку, а средний луч несет в себе мощность, заключенную в этой трубке. $dE = kI_0e^{-\tau(r)}S_0$
- $\frac{dE}{dtdV} = \frac{kI_0e^{-\tau(r)}}{\cos(\theta(r))}\frac{S_0}{S}$
- $S_0 = 2\pi p dp$
- $S = 2\pi \sin(\theta(r))d\theta$

Неоднородность поглощения энергии $dE/dtd\Omega$ для $n_e = n_c (r_c/r)^2$

Асимметрия и среднеквадратичное отклонение в зависимости от расфокусировки d/r_0 для f/D=4 и f/D=8при Гауссовом распределении интенсивности в пучке

<i>f/D</i> =4				<i>f/D</i> =8			
d / r_0	A(%)	$\eta,\%$	Δ,%	d / r_0	A(%)	$\eta,\%$	Δ,%
6	58,0	3,62	0,73	12	57,7	6,68	1,04
8	53,2	4,44	0,81	14	52,9	4,08	0,74
10	45, 3	4,98	1,10	16	49	4,73	0,87

 $F(\theta, \varphi) = dE/dtd\Omega$

 $\eta = (F_{max} - F_{min}) \quad \Delta = \frac{1}{\overline{F}} \sqrt{\frac{1}{4\pi} \int_{0}^{2\pi} \int_{0}^{\pi} (F(\theta, \varphi) - \overline{F})^2 \sin(\theta) d\theta d\varphi}$

Среднеквадратичное отклонение: Δ = 0.73. Ведущими являются гармоники с № 4 и 8. Расчет гармонического состава проведен по формулам:

$$\sigma_{l} = \sqrt{\sum_{m=-n}^{m=n} \left(a_{lm} / a_{00} \right)^{2}} a_{lm} = \frac{1}{4\pi} \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \frac{dE}{dtd\Omega}(\theta, \varphi) \overline{Y_{l}^{m}}(\theta, \varphi) \sin(\theta) d\theta$$

обяц-внито $dE/dtd\Omega$ для $n_e = n_c (r_c/r)^2$ в оптимуме при f/D=4 и f/D=8

Среднеквадратичное отклонение: $\Delta = 0.52.\Delta$ уменьшилось в 1.5 раза по сравнению с случаем для квадратичного профиля электронной концентрации. Ведущими остались гармоники с №4 и №8.

Радиальный профиль dE/dtdV и амплитуда 4-ой гармоники для $n_e = n_c (r_c/r)^2$ и расфокусировки d/r_0

^{маденито} Неоднородность поглощенной энергии $dE/dtd\Omega$ для различных оптических толщин Коэффициент отражения рассчитывался по формуле $R_{\text{отр}} = e^{-2*\tau_0}$, где τ_0 - оптическая толщина для луча в

пучке, нормально падающего на мишень

<i>d</i> / <i>r</i> ₀	$R_{\rm orp} = 5\%$		$R_{\rm orp} = 10\%$			$R_{\rm orp} = 20\%$			
	A(%)	$\eta, \%$	Δ,%	A(%)	$\eta,\%$	Δ,%	A(%)	$\eta,\%$	Δ,%
12	77,3	6,60	1,16	69,5	6,61	1,10	57,7	6,68	1,04
14	72,2	4,87	0,90	64,3	4,54	0,83	52,9	4,08	0,74
16	67,9	5,25	1,07	60	5,03	0,97	49	4,73	0,87

Конфигурация облучения мишени с осями симметрии кластеров в вершинах куба Асимметрия и среднеквадратичное отклонение в зависимости от расфокусировки d/r₀ для Гауссового профиля интенсивности и фокальных соотношений ƒ/D=4 и ƒ/D=8

J	<u> </u>				
d / r_0	$\eta,$ %	Δ,%	d / r_0	$\eta,$ %	Δ,%
4	15.78	3.78	10	13,47	2,94
6	4.33	0.50	12	7,76	1,23
8	4.79	0.86	14	4,04	0,54
10	10.56	1.44	16	4,26	0,76

Сравнение эффективности двух конфигураций облучения

N	$\Delta_o, \%$	$\Delta_a\%$,
6	0.35	0.73
8	0.2	0.53

	Δ ₈ ,%, m=2	Δ ₆ ,%,m=2	$\Delta_6, \%, m=3$
$\sigma_p = 3\%$	0.78	0.98	0.73
$\sigma_p = 5\%$	0.98	1.31	0.96

Заключение

- При оптимальных условиях фокусировки для фокального соотношения *f/D*=8 среднеквадратичное отклонение поглощенной энергии составило 0.55%.
- Переход с 6-и на 8-м главных направлений облучения в геометрии куба улучшает однородность поглощенной энергии и допустимый разбаланс мощности в ~1,5 раза.
- Разбаланс мощности между 48-ю кластерами лазерных пучков не должен превышать 3 % для получения среднеквадратичного отклонения поглощенной энергии не более 1%.

Спасибо за внимание

