



им. академика Е.И.Забабахина

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

РФЯЦ-ВНИИТФ

## МОДЕЛИРОВАНИЕ ТЕРМОЯДЕРНЫХ МИШЕНЕЙ С УЧЕТОМ ГЕНЕРАЦИИ БЫСТРЫХ ЭЛЕКТРОНОВ В ПРОЦЕССАХ ДВУХПЛАЗМОННОГО РАСПАДА И ВЫНУЖДЕННОГО РАМАНОВСКОГО РАССЕЯНИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ В ПЛАЗМЕ

В.А.Лыков, Е.С.Бакуркина, Н.Г.Карлыханов, Г.Н.Рыкованов, В.Е.Черняков и Е.В. Щеголев

Международная конференция XIII Забабахинские научные чтения

Снежинск, 21 марта 2017

# Содержание доклада



#### введение

- 1. Модель поглощения лазерного излучения с учетом процессов двухплазмонного распада и вынужденного Рамановского рассеяния
- 2. Верификация новой модели поглощения лазерного излучения по экспериментам, проведенным на установках JANUS и ARGUS
- 3. Верификация модели с использованием экспериментальных данных по прямому облучению сферической мишени на установке NIF
- 4. Моделирование мишени для мегаджоульной установки с длиной волны лазерного излучения λ=0,53 мкм.

### выводы

## ВВЕДЕНИЕ

Российская мегаджоульная лазерная установка<sup>\*)</sup> будет работать на 2-ой гармонике излучения Nd-лазера, - в отличие от лазера NIF, который работает на 3-ей гармонике Nd-лазера. При увеличении длины волны лазера снижается эффективность столкновительного поглощения и усиливается роль нелинейных процессов, приводящих к рассеянию ЛИ и генерации надтепловых электронов. Быстрые электроны, проникая в плотные слои мишени, вызывают их разогрев, что препятствует достижению высоких плотностей, необходимых для термоядерного зажигания мишени.

Поэтому вопросы взаимодействия лазерного излучения с плазмой представляются весьма актуальными, особенно при планировании экспериментов с мишенями прямого облучения на мегаджоульной установке с длиной волны лазерного излучения  $\lambda = 0,53$  мкм.

<sup>\*)</sup> С.Г. Гаранин. УФН, 181, 434 (2011).



В основу новой модели поглощения лазерного излучения сферической мишенью положена разработанная ранее физическая модель, которая учитывала самосогласованным образом [1]:

- обратно-тормозное, резонансное и параметрическое поглощение лазерного излучения;
- укручение профиля плотности;
- рефракцию лазерного излучения;
- вынужденное рассеяние Мандельштама-Бриллюэна;
- особенностей фокусировки лазерного излучения на мишень.

[1] Е.Н.Аврорин, А.И.Зуев, Ю.Н.Лазарев, В.А.Лыков, Н.П.Ситников, О.С.Широковская. Модель поглощения лазерного излучения сферической мишенью. ВАНТ. Методики и программы численного решения задач математической физики, вып. 2, 1985, стр. 10-20. Двухплазмонный распад - трехволновой нелинейный процесс в плазме, в результате которого электромагнитная волна с частотой (ω<sub>0</sub>) параметрически распадается на две продольные (Ленгмюровские) волны:

$$\omega_0 = \omega + \omega$$
`  $\vec{k_0} = \vec{k} + \vec{k}$ `

Коэффициент поглощения ЛИ за счет двухплазмонного распада в области плотности плазмы, равной четверти критической равен [1]:

$$\begin{split} \mathbf{A}_{qc} &= 0,01 \times (\mathbf{G}_{qc}/4)^6 \text{, если } \mathbf{G}_{qc} < 4 \text{ и } \mathbf{A}_{qc} = 0,01 \times (\mathbf{G}_{qc}/4)^{1,2} \text{ если } \mathbf{G}_{qc} \geq 4 \text{,} \\ \\ \text{где: } \mathbf{G}_{qc} &= 1,7 \times 10^6 \frac{<\mathbf{Z}>}{<\mathbf{Z}^2>} \left(\frac{\mathbf{L}_{qc}}{\lambda}\right) \frac{\mathbf{I}_{qc}\lambda^2}{\mathbf{T}_e} \xi_{qc} \text{; } \lambda \text{(мкм)- длина волны лазерного излучения; } \mathbf{T}_{eqc} \text{(кэВ)-} \\ \\ \text{температура электронов; } \mathbf{L}_{qc} \text{(см)- масштаб неоднородности плотности; } \mathbf{I}_{qc} \left[10^{14} \text{ Вт/см}^2\right] \text{ - } \\ \\ \text{интенсивность лазерного излучения в области плотности, равной четверти критической } \\ \\ \rho_{qc} &= \rho_c/4 \text{; } \xi_{qc} \text{ - параметр порядка 1.} \end{split}$$

Процессы двухплазмонного распада приводят к генерации быстрых электронов с эффективной температурой [1]:

T<sub>h2</sub>=15×max{1;(G<sub>qc</sub>-1)} [в кэВ]



Коэффициент поглощения ЛИ при вынужденном Рамановском рассеяния в области плотности, ниже четверти критической равен [1]:

$$\begin{split} A_{SRS} &= 0,125 \cdot \{1 - exp[-(G_{SRS}^{1/3} - 1)]\}, \ ecли \ G_{SRS} \geq 1 \\ A_{SRS} &= 0, \\ \text{ссли } G_{SRS} = 215 \cdot L_{qc}^{4/3} \lambda^{2/3} \cdot I_{qc} \cdot \frac{<Z>}{<Z^2>} \xi_{SRS}; \ \lambda(\text{мкм})$$
- длина волны лазерного излучения;  $L_{qc}(\text{см})$ -масштаб неоднородности;  $I_{qc} [10^{14} \text{ Bt/cm}^2]$  - интенсивность лазерного излучения в области плотности, равной четверти критической:  $\rho_{qc} = \rho_c / 4; \ \xi_{SRS}$ -- параметр порядка 1.

Процессы Рамановского рассеяния приводят к генерации быстрых электронов с эффективной температурой [1]:

$$\begin{split} T_{h3} = T_{eqc} \left(1 + 3 \cdot \Delta_{SRS}^2\right) / \Delta_{SRS}^2 \quad [ \ \kappa \ni B ], \\ \text{где параметр } \Delta_{SRS} \approx 0,3 \ [1]. \end{split}$$

Верификация новой модели поглощения лазерного излучения по экспериментам, проведенным на установках JANUS и ARGUS



Эксперимент #75060402 JANUS [1,2]

Мишень: стеклянная оболочка диаметром D = 86,6 мкм с толщиной стенки  $\Delta = 0,70$  мкм была заполнена ДТ-газом до плотности  $\rho_{dt} \approx 2,5$  мг/см<sup>3</sup>. Лазерный импульс:  $E_L = 28,3$  Дж,  $P_L \approx 0,4$  ТВт,  $t_{1/2} = 70$  псек.

Эксперимент # 36120910 ARGUS [1,2]

Мишень: стеклянная оболочка диаметром D = 88 мкм с толщиной стенки  $\Delta = 0,88$  мкм была заполнена ДТ-газом до плотности  $\rho_{dt} \approx 3,1$  мг/см<sup>3</sup>. Лазерный импульс: E<sub>L</sub>=128 Дж, P<sub>L</sub> $\approx 4$  ТВт, t<sub>1/2</sub> = 32 псек.

Сжатие газа и оболочки происходило в режиме с высоким уровнем энтропии ("exploding – pusher» - взрывающаяся оболочка), который обусловлен прогревом оболочки мишени быстрыми электронами.

Эксперименты [1,2] использовались ранее для калибровки программы «ЭРА» [3]

1. Storm E., Ahlsrom H., Boyle M. et. al. Phys. Rev. Lett., v. 40, № 24, p. 1570-1573 (1978).

- 2. N. M. Ceglio and L. W. Coleman, Phys. Rev. Lett. 39, 20 (1977).
- 3. Е.Н. Аврорин, и др., ВАНТ. Методики и программы, вып. 2, 1985, 21-28

Верификация модели поглощения лазерного излучения по экспериментам, проведенным на установках JANUS и ARGUS в 70гг

#### Результаты экспериментов [1, 2] и расчетов по программе ЭРА

|                       | Ea   | N                               | T <sub>i</sub>   | 8    | Параметры РИ   |                |      |  |
|-----------------------|------|---------------------------------|------------------|------|----------------|----------------|------|--|
|                       | Дж   | <sup>1</sup> Ndt                | кэВ              | 0    | T <sub>c</sub> | T <sub>h</sub> | Ex   |  |
| 75060402 JANUS        | ~6,4 | $(4,6\pm0,4)\cdot10^{6}$        | $\leq 2$         | ~100 | 0,71           | 10,6           | ~0,4 |  |
| Расчет ЭРА [3]        | 7,3  | 4×10 <sup>6</sup>               | 1,4              | 180  | 0,6            | 11             | 0,65 |  |
| Расчет ЭРА новый      | 6,9  | 5,2×10 <sup>6</sup>             | 1,3              | 46   | 0,69           | 8,7            | 0,57 |  |
| 26120010 ADCUS        | 20   | $(8,0\pm1,4)\cdot10^8$ n        | 7,6±1,4 (n)      | 50   | 1.0            | 8,7<br>17,3    | 2.0  |  |
| <b>30120910 AKGUS</b> | ~28  | $(7,9\pm1,4)\cdot10^{8} \alpha$ | $5,2\pm 1,5$ (a) | ~50  | 1,0            |                | ~3,9 |  |
| Расчет ЭРА [3]        | 25   | 2×10 <sup>9</sup>               | 6                | 120  | 0,9            | 20             | 2    |  |
| Расчет ЭРА новый      | 29   | 1,4×10 <sup>9</sup>             | 5,5              | 40   | 0,92           | 21             | 1,9  |  |

Здесь: Е<sub>a</sub>(Дж) - поглощенная энергия лазерного излучения; N<sub>dt</sub> - нейтронный выход; T<sub>i</sub> (кэВ) - температура ионов сжатого ДТ-топлива; δ - объемное сжатие ДТ-газа; T<sub>c</sub> и T<sub>h</sub> (кэВ)- эффективные температуры, найденные по наклону спектра рентгеновского излучения в области энергий квантов ниже и выше 10 кэВ; Е<sub>x</sub>(Дж) – выход рентгеновского излучения в интервале энергий квантов 0,3<ε<17 кэВ

1. Storm E., Ahlsrom H., Boyle M. et. al. Phys. Rev. Lett., v. 40, № 24, p. 1570-1573 (1978).

2. N. M. Ceglio and L. W. Coleman, Phys. Rev. Lett. 39, 20 (1977).

3. Е.Н. Аврорин, и др., ВАНТ. Методики и программы, вып. 2, 1985, 21-28

Верификация модели поглощения лазерного излучения по экспериментам, проведенным на установках JANUS и ARGUS в 70гг



Спектры рентгеновского излучения, зарегистрированные в опытах [1] #75060402-JANUS, #36120910-ARGUS (слева) и полученные в расчетах по программе ЭРА с новой моделью поглощения ЛИ (справа)

1. Storm E., Ahlsrom H., Boyle M. et. al. Phys. Rev. Lett., v. 40, № 24, p. 1570-1573 (1978).



Поглощение и рассеяние ЛИ в расчетах, проведенных по программе ЭРА для условий экспериментов JANUS и ARGUS

| Расчет ЭРА | Е <sub>а</sub><br>Дж | N <sub>dt</sub>     | QE<br>Дж | QBE<br>Дж | SBE<br>Дж | Т <sub>qc</sub><br>кэВ | A <sub>p+n</sub><br>% | A <sub>qc</sub><br>% | A <sub>SRS</sub><br>% | A <sub>t</sub><br>% | П <sub>Б</sub><br>% |
|------------|----------------------|---------------------|----------|-----------|-----------|------------------------|-----------------------|----------------------|-----------------------|---------------------|---------------------|
| для JANUS  | 6,9                  | 5,2×10 <sup>6</sup> | 2,7      | 2,1       | 4,2       | 0,64                   | 22                    | 2E-4                 | 0                     | 2,0                 | 91                  |
| для ARGUS  | 29                   | 1,4×10 <sup>9</sup> | 6,4      | 6,0       | 23        | 0,97                   | 20                    | 5E-5                 | 0                     | 0,27                | 75                  |

Здесь: Е<sub>a</sub> - поглощенная энергия ЛИ; QE – энергия ЛИ, перешедшая в тепловые электроны; QBE- разогрев мишени быстрыми электронами (БЭ), SBE- поток энергии БЭ через внешнюю границу; Т<sub>qc</sub> –температура электронов в «короне»; A<sub>p+n</sub>, A<sub>qc</sub>, A<sub>SRS</sub>, A<sub>t</sub> – доли энергии ЛИ, поглощенные за счет резонансного и параметрического поглощения, двухплазмонного распада, Рамановского рассеяния, обратно-тормозного механизма; П<sub>Б</sub> - ослабления лазерного излучения за счет ВРМБ.

Введение процессов двухплазмонного распада и вынужденного Рамановского рассеяния не повлияло на интерпретацию опытов, проведенных на лазерных установках JANUS и ARGUS. Причиной этого являются малые размеры мишени и длительности лазерных импульсов в опытах 70гг.

1. Storm E., Ahlsrom H., Boyle M. et. al. Phys. Rev. Lett., v. 40, № 24, p. 1570-1573 (1978).

Верификация модели с использованием данных по прямому облучению сферической мишени на установке NIF





Мишенная камера установки NIF для облучения мишеней с непрямым воздействием (слева). Реконфигурация камеры для прямого облучения мишеней (справа) требует остановки экспериментов. Вместо этого было предложено использовать схему полярного облучения мишеней с прямым воздействием (PDD - polar-direct-drive) [1]. Верификация модели с использованием данных по прямому облучению сферической мишени рояц-вниито на установке NIF



Типичная мишень и схема облучения, которые использовались в экспериментах по полярному облучению мишеней на установке NIF. Открытые кружки расположение оптики на мишенной камере. Красные квадраты и синие кружки – точки прицеливания лучей на поверхности мишени (из работы [1])

E23751JR

#### 1. M. Hohenberger, et al, Phys. Plasmas 22, 056308 (2015).

Верификация модели с использованием данных по прямому облучению сферической мишени на установке NIF



E23666JR

Мощности лазерного излучения от времени в опыте #131210 (a);

Сравнение затребованной формы лазерного импульса и в опыте (b);

Проекция распределения интенсивности лазерного излучения на сферу с диаметром мишени (с) (из работы [1])

## Верификация модели с использованием данных по прямому облучению сферической мишени на установке NIF

В расчетах ЭРА использовались параметры мишени и лазера из работы [1]. Учитывалось ограничение электронной теплопроводности предельным потоком с коэффициентом f=0,06. Полярная схема облучения заменялась на двухсторонне облучение мишени лазерным импульсом с λ=0,35 мкм через оптику F/1 и фокусировкой на расстоянии d=0,97 мм за центр мишени

#### Поглощение и рассеяние ЛИ в расчете ЭРА для опыта #131210 на NIF

| K <sub>a</sub> | QE  | QBE | SBE | T <sub>qc</sub> | A <sub>p+n</sub> | T <sub>p+n</sub> | A <sub>qc</sub> | T <sub>qc</sub> | A <sub>SRS</sub> | T <sub>SRS</sub> | A <sub>t</sub> | ПБ |
|----------------|-----|-----|-----|-----------------|------------------|------------------|-----------------|-----------------|------------------|------------------|----------------|----|
| %              | кДж | кДж | кДж | кэ́В            | <b>%</b>         | кэВ              | %               | кэ́В            | %                | кэВ              | %              | %  |
| 70             | 420 | 3,1 | 3,5 | 3,4             | 0,29             | 2,7              | 0,48            | 60              | 0,26             | 50               | 69             | 66 |

Здесь: К<sub>а</sub> - поглощенная доля энергии ЛИ; QE – энергия ЛИ, перешедшая в тепловые электроны; QBE- разогрев мишени быстрыми электронами (БЭ), SBE- поток энергии БЭ через внешнюю границу; T<sub>qc</sub> (кэВ) –температура электронов при n<sub>e</sub>=n<sub>ec</sub>/4 на момент t=6 нс; A<sub>p+n</sub>, A<sub>qc</sub>, A<sub>SRS</sub>– доли энергии, поглощенные за счет резонансного и параметрического поглощения, двухплазмонного распада, Рамановского рассеяния, температуры их БЭ: T<sub>p+n</sub>, T<sub>qc</sub>, T<sub>SRS</sub> соответственно; A<sub>t</sub> – доля энергии ЛИ, поглощенная за счет обратно-тормозного механизма; П<sub>Б</sub> - ослабления лазерного излучения за счет ВРМБ.

Разогрев мишени от быстрых электронов составил ~ 3 кДж или ~ 0,5% от E<sub>L</sub>. Учет ВРМБ снизил эффективность поглощения ЛИ с 91% до 70 % от E<sub>L</sub>, что согласуется с расчетами по программе DRACO, проведенных без и с учетом процесса CBET [1].

1. M. Hohenberger, et al, Phys. Plasmas 22, 056308 (2015).

# Верификация модели с использованием данных по прямому облучению сферической мишени рояц-вниито на установке NIF

1E14

1E13

1E12

1E11

0

50

1<sup>2</sup>I/dεdΩ (keV/keV·sr)



Спектр рентгеновского излучения, зарегистрированный в опыте #131210. Сплошная линия отвечает быстрым электронам с температурой Т<sub>h</sub>≈46±2 кэВ и полной энергией E<sub>b</sub>≈2,5±0,3 кДж [1] Спектр рентгеновского излучения в расчете ЭРА для опыта #131210. Спектр отвечает эффективной температуре  $T_p \approx 58$  кэВ и энергии быстрых электронов, переданной в мишень QBE  $\approx 2$  кДж.

100 ε(keV) 150

200

Верификация модели с использованием данных по прямому облучению сферической мишени на установке NIF



Траектория плотной части оболочки: Эксперимент (ромбы), расчет DRACO без учета CBET (пунктир) и с учетом CBET (сплошная синяя линия) [1]



Распределение плотности в расчете ЭРА в координатах: время в [нс] - Эйлеров радиус в [100 мкм]. Сплошные черные линии – изолинии с плотностью 1 г/см<sup>3</sup>

Предложенная модель поглощения лазерного излучения успешно выдержала проверку при сравнении с данными, полученными на NIF и с аналогичными расчетами, выполненными по программе DRACO [1].

1. M. Hohenberger, et al, Phys. Plasmas 22, 056308 (2015).

## Моделирование мишени для мегаджоульной установки с длиной волны лазерного излучения λ=0,53 мкм



В работе [1] предложена мишень прямого облучения для зажигания на установке с энергией ~ 2 МДж и длиной волны λ=0,53 мкм.



Мощность лазерного излучения от времени:  $P_1(t)$  – из работы [1],  $P_2(t)$  – исправленная.

В программе ЭРА учитывалось ограничение электронной теплопроводности предельным потоком с коэффициентом f=0,06.

#### Условия облучения:

48 лазерных пучков облучают мишень через оптику F/8, центр фокусировки – за мишень на расстоянии 1,6-2,0 мм при размере фокального пятна 400 мкм.

Р<sub>1</sub>(t) – из работы [1], оптимальна при 100% поглощении ЛИ.

 $P_2(t)$  – оптимизирована на  $E_L$ =2,5 МДж при обратно-тормозном поглощении с учетом рефакции ЛИ (поглощение ~ 60% от  $E_L$ )

1. С.А. Бельков и др., ЖЭТФ, 148, вып. 4. Стр. 784-798 (2015)

## Моделирование мишени для мегаджоульной установки с длиной волны лазерного излучения λ=0,53 мкм



Результаты 1D- расчетов по программе ЭРА при учете различных процессов

|   | P <sub>1,2</sub>      | Е <sub>L</sub><br>МДж | A <sub>t</sub><br>% | Е <sub>БЭ</sub><br>кДж | A <sub>p+n</sub><br>% | A <sub>qc</sub><br>% | A <sub>SRS</sub><br>% | Т <sub>SRS</sub><br>кэВ | П <sub>Б</sub><br>% | W <sub>Q</sub> | р<br>г/см <sup>3</sup> | Т <sub>і</sub><br>кэВ | Е <sub>т.я.</sub><br>МДж | Е <sub>т.я.</sub> *<br>МДж |
|---|-----------------------|-----------------------|---------------------|------------------------|-----------------------|----------------------|-----------------------|-------------------------|---------------------|----------------|------------------------|-----------------------|--------------------------|----------------------------|
| 1 | <b>P</b> <sub>1</sub> | 1,5                   | 100                 |                        | -                     | -                    | -                     | -                       | -                   | 1,6            | 39                     | 7,7                   | 0,25                     | 31                         |
| 2 | <b>P</b> <sub>1</sub> | 2,5                   | 59                  | -                      | -                     | -                    | -                     | -                       | -                   | 0,9            | 28                     | 5,6                   | 0,08                     | 0,26                       |
| 3 | P <sub>2</sub>        | 2,5                   | 59                  | -                      | -                     | -                    | -                     | -                       | -                   | 1,8            | 57                     | 7,7                   | 0,19                     | 58                         |
| 4 | P <sub>2</sub>        | 2,5                   | 59                  | 42                     | 1,9                   | -                    | -                     | -                       | -                   | 1,8            | 58                     | 8,0                   | 0,23                     | 59                         |
| 5 | P <sub>2</sub>        | 2,5                   | 61                  | 43                     | 1,8                   | 2,8                  | -                     | 100                     | -                   | 1,4            | 38                     | 7,3                   | 0,15                     | 8,7                        |
| 6 | P <sub>2</sub>        | 2,5                   | 63                  | 54                     | 1,6                   | 2,6                  | 4,4                   | 100                     | -                   | 0,4            | 12                     | 6,5                   | 0,05                     | 0,08                       |
| 7 | P <sub>2</sub>        | 2,5                   | 43                  | 36                     | 0,8                   | 1,2                  | 1,8                   | 80                      | 59                  | 0,2            | 6,9                    | 4,4                   | 0,01                     | 0,01                       |

Здесь: A<sub>t</sub> - обратно-тормозного поглощение; E<sub>БЭ</sub>- разогрев мишени от БЭ; A<sub>p+n</sub>, A<sub>qc</sub>, A<sub>SRS</sub> поглощение за счет резонансного и параметрического поглощения, двухплазмонного распада, Рамановского рассеяния; T<sub>SRS</sub> – температура БЭ при SRS; П<sub>Б</sub> - ослабление ЛИ за счет ВРМБ; р и T<sub>i</sub> – максимальная плотность и ионная температура в центре мишени; E<sub>т.я.</sub> и E<sub>т.я.</sub>\*- выход термоядерной энергии без и с учетом термоядерного горения топлива.

W<sub>Q</sub> - запас по термоядерному зажиганию [1] с учетом потерь может быть представлен в виде:  $W_Q = (n-1) \int_{t_0}^{t_{\rho max}} \frac{dQ_{m.n.} / dt}{E+Q} dt$ , n - показатель степени в аппроксимации  $<\sigma v >_{dt} \sim T^n$ .

Генерация быстрых электронов в процессах двухплазмонного распада и Рамановского рассеяния катастрофически снижают запас по термоядерному зажиганию мишени

Е.Н. Аврорин, Л.П. Феоктистов, Л.И. Шибаршов, Физика плазмы 6 (5), 965-972, (1980).



- 1. Разработана модель поглощения лазерного излучения для проведения одномерных расчетов мишеней прямого облучения с учетом генерации быстрых электронов в процессах двухплазмонного распада (ДПР) и вынужденного Рамановского рассеяния (ВКР).
- 2. Проведена верификация разработанной модели на основе сравнения с экспериментами, выполненными на установках JANUS и ARGUS, а также с данными, полученными в опытах на установке NIF.
- Показано, что ВРМБ и генерация быстрых электронов в процессах ДПР и ВКР могут катастрофически снизить вероятность достижения условий термоядерного зажигания мишеней прямого облучения на мегаджоульных установках при использовании лазерного излучения с λ = 0,53 мкм.
- 4. Необходимо дальнейшее теоретическое и экспериментальное изучение нелинейных процессов взаимодействия лазерного излучения с плазмой и проведение оптимизации мишеней с их учетом для условий предполагаемых экспериментов на мегаджоульной установке.



## СПАСИБО ЗА ВНИМАНИЕ