

ФГУП «РФЯЦ-ВНИИЭФ» Институт Теоретической и Математической Физики

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

ГЕНЕРАЦИЯ МАГНИТНОГО ПОЛЯ В ПЛАЗМЕ ЛАЗЕРНОГО ПУЧКА ВЫСОКОЙ ЭНЕРГИИ ПО РЕЗУЛЬТАТАМ 2D МОДЕЛИРОВАНИЯ

Авторы: А.С. Гнутов, С.А. Донцов, К.А. Волкова

XIII Забабахинские научные чтения 20-24.03.2017

История вопроса

- 1966 год Первые измерения самогенерирующихся магнитных полей маленькими индукционными датчиками вблизи лазерной газовой мишени (В.В. Коробкин, Р.В. Серов, ЖЭТФ, 1966 г.)
- 1967 год Измерения около твердых мишеней (Г.А. Аскарян, М.С.Рабинович и др., ЖЭТФ 1967 г.)
- 1971 год Обнаружены относительно большие поля (кГс) (J. A. Stamper et al., Phys. Rev. Lett. 1971 г.)
- Генерация магнитного поля в лазерных экспериментах теоретически объяснена с помощью тепловых механизмов
- Стало очевидно, что очень большие (МГс) поля могут существовать в области лазерного пятна и существенно влиять на проходящие процессы
- Большие поля (МГс) измерены с помощью Фарадеевского вращения диагностического лазерного пучка (A. Davies et al., Rev. Sci. Instrum. 85, 2014 г.)
- Теоретически предсказываются магнитные поля в 10 МГс (A. Davies et al, 56th Annual Meeting of the American Physical Society, New Orleans, LA 2014) и более (X.Q. Li, S.Q. Liu, and X.Y. Tao, Plasma Phys. 48, 2008)

Механизм генерации поля

Иллюстрация позаимствована из работы A. Davies et al, 56th Annual Meeting of the American Physical Society, New Orleans, LA 2014

Постановка ГД-задачи

4/15

В расчетах учитывались следующие процессы:

- газодинамическое движение и плазмы в 3Т приближении, 5-
- спектральный перенос РИ,
- электронная и ионная
- теплопроводности и

релаксация,

- ионизация вещества,
- перенос и поглощение ЛИ.

Фрагмент расчетной сетки в задаче на момент 1.5 нс (~ середина импульса)

Расчетное распределение плотности вещества в задаче (логарифмическая шкала)

Расчетное распределение крит.плотности вещества в задаче (линейная шкала)

Результаты ГД-расчета

1.5 нс

Степень ионизации веществ

Температура излучения

Вычисление генерирующего члена

Вычисление генерирующего члена

Что дальше?

$$\frac{\partial \mathbf{B}^{t}}{\partial t} = \mathbf{S}^{t} = \frac{c}{ne} \nabla (kT) \times \nabla n$$
$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{V} \times \mathbf{B}) + \frac{c^{2}}{4\pi\sigma} \nabla^{2} \mathbf{B} - \nabla \times \left[\left(\frac{\mathbf{J}^{0} + \mathbf{J}^{r}}{ne} \right) \times \mathbf{B} \right] + \mathbf{S}$$
$$\mathbf{B} = \mathbf{B}(r, t)$$

$$\mathbf{B}^{t} = \int \frac{\partial \mathbf{B}^{t}}{\partial t} dt = \int \frac{c}{ne} \nabla(kT) \times \nabla n \, dt$$

Оценка магнитного поля

Распределение в пространстве магнитной индукции, обусловленной термогенерацией.

Оценка магнитного поля

Распределение в пространстве магнитной индукции, обусловленной термогенерацией.

 100кГс-1МГс 1Мгс-10МГс более 10Мгс
100кГс-1МГс 1Мгс-10МГс более 10Мгс

Заключение

Величина скорости образования магнитного поля достигает, в отдельных точках пространства, значений до 100МГс/нс. Величина лазер-генерируемого магнитного поля, оцененная как соответствующий интеграл от рассчитанных скоростей образования поля в пространстве, в некоторых областях достигает значений 10-100 МГс. Область пространства, в которой реализуется генерация магнитного поля с уровнем более 1 МГс представляет собой цилиндрический слой вокруг лазерного пучка длиной около 1.5 мм и толщиной до 0.2 мм. Магнитное поле преимущественно ориентировано по правому винту относительно направления падения лазерного излучения

