ДИОКСИД КРЕМНИЯ В ОБЛАСТИ ТЁПЛОГО ПЛОТНОГО ВЕЩЕСТВА: АНАЛИЗ ПРОБЛЕМ И ГРАНИЦЫ ПРИМЕНИМОСТИ МЕТОДА ПСЕВДОПОТЕНЦИАЛОВ

А.А. РЫКУНОВ

Российский Федеральный Ядерный Центр - ВНИИ технической физики им. академ. Е.И. Забабахина

Преимущества метода DFT+ПП

- 1. Электроны рассматриваются как квантовые частицы, что позволяет оценивать вклад обменных и корреляционных слагаемых в энергию;
- Подход, хоть и с некоторыми оговорками, можно назвать первопринципным, поскольку в качестве входных параметров необходимо иметь лишь информацию о стехиометрии системы;
- По сравнению с другими первопринципными подходами, является относительно «дешёвым» в плане вычислительных требований (системы могут содержать до нескольких сотен атомов);
- В рамках борн-оппенгеймеровской квантовой молекулярной динамики возможен анализ эволюции исследуемой системы во времени при конечных давлениях и температурах.

Ограничения подхода DFT+ПП

I. Обусловленные ПП:

- Невозможность произвольного увеличения давления;
- Невозможность произвольного повышения температуры.

II. Обусловленные DFT:

- Выбор формы обменно-корреляционного функционала (ОКФ);
- Энергия обрезания плоских волн (конечность базисного набора).

III. Обусловленные методом молекулярной динамики Борна-Оппенгеймера:

- Рассмотрение движения ядер как классических частиц;
- Значительное уменьшение временного шага с ростом температуры.

Электронная теплоёмкость как критерий границ применимости псеводопотенциала по температуре

С ростом температуры начинает сказываться вклад внутренних электронов в теплоёмкость, что проявляется в отклонении кривых $C_V(T)$, построенных в псевдопотенциальном приближении от полноэлектронного расчёта

Изотерма T = 0: α -кварц

Эксперимент	В, ГПа	B'	Расчёт	В, ГПа	Β'
Vaidya et al. [1]	34.7±0.1	7.66±0.10	AM05	26.2±0.4	5.26±0.14
Olinger et al. [2]	38.0±2.3	5.80±0.82	LDA	32.4±0.7	5.95±0.26
Jorgensen [3]	36.4±0.4	6.49±0.40	PBE	39.5±1.5	4.12±0.35
d'Amour et al. [4]	37.5±10.3	5.55±4.81	PBESol	32.7±1.5	5.34±0.47
Levien et al. [5]	37.7±8.2	5.86±4.56	LDA [8,9]	38.1	3.90
Hazen et al. [6]	32.0±4.7	6.09±1.64			
Glinnemann et al. [7]	34.8±10.1	6.27±4.23			

Изотерма Т = 0: стишовит

Эксперимент	В, ГПа	B'	Расчёт	В, ГПа	Β'
Liu et al. [10]	343.1±24.2	4.86±3.11	LDA	310.7±0.6	4.59±0.04
Ross et al. [11]	312.2±8.5	1.82±1.29	AM05 (LDA PP)	287.7±0.5	4.75±0.04
Hemley et al. [12]	327.0±43.4	2.50±1.97	AM05 (GGA PP)	286.8±1.4	4.76±0.09
Sato [13]	298.7±10.0	0.60±2.21	PBE	281.0±0.6	4.30±0.17
			PBESol	294.8±1.1	4.59±0.08

Фазовый переход α-кварц → стишовит

Молекулярно-динамическое моделирование

- Для моделирования использовались системы, содержащие 72 атома (24 молекулы) SiO₂.
 Тестовые расчёты с ячейкой большего размера (216 атомов) не выявили заметных расхождений в получаемых значениях давления и внутренней энергии;
- Энергия отсечки для базиса плоских волн составляла 900 eV. Также была проведена серия расчётов с E_{cut} = 600 eV;
- Дискретизация обратного пространства ограничивалась Г-точкой (были проведены тесты на сетке 2x2x2);
- Временной шаг варьировался в зависимости от температуры, но не превышал 1 фс;
- Обменно-корреляционная часть энергии была представлена функционалами PBE, AM05 и PBESol;
- В качестве модельной смеси, на примере которой проводилась оценка влияния стехиометрического состава на вид ударной адиабаты, был выбран алюмосиликат (SiO₂)_{0.81}(Al₂O₃)_{0.19} с плотностью, соответствующей SiO₂ при нормальных условиях.
- Диапазон температур: 300 63000 К, плотностей: 1.585 7.943 г/см³. Опорной структурой для построения ударной адиабаты являлись аморфизованные кристаллы, полученные путём охлаждения расплавов и уравновешенные при Т = 300 К.

Основная ударная адиабата α-кварца

Р, ГПа

Радиальные функции распределения

Список использованных источников

- 1. Vaidya, S.N., Bailey, S., Pasternack, T., Kennedy G.C. // J. Geophys. Res. 1973. V. 78. Pp. 6893-6898.
- 2. Olinger, B., Halleck, P.M. // J. Geophys. Res. 1976. V. 81. Pp. 5711-5714.
- 3. Jorgensen, J.D. // J. Appl. Phys. 1978. V. 49. Pp. 5473-5478.
- 4. d'Amour, H., Denner, W., Schulz, H. // Acta Cryst. B. 1979. V. 35. Pp. 550-555.
- 5. Levien, L., Prewitt, C.T., Weidner, D.J. // Am. Miner. 1980. V. 65. Pp. 920-930.
- 6. Hazen, R.M., Finger, L.W., Hemley, R.J., Mao, H.K. // Solid State Commun. 1989. V. 72. Pp. 507-511.
- 7. Glinnemann, J., King Jr., H.E., Schulz, H. et al. // Z. Kristallogr. 1992. V. 198. Pp. 177-212.
- 8. Keskar, N.R., Chelikowsky, J.R. // Phys. Rev. B. 1992. V. 46. Pp. 1-13.
- 9. Chelikowsky, J.R., Binggeli, N., Keskar, N.R. // J. Alloys Comp. 1993. V. 197. Pp. 137-144.
- 10. Knudsen, M.D., Desjarlais, M.P. // Phys. Rev. Lett. 2009. V. 103. P. 225501.
- 11. Knudswn, M.D., Desjarlais, M.P. // Phys. Rev. B. 2013. V. 88. P. 184107.
- 12. Трунин Р.Ф. // УФН. 1994. Т. 164. С. 1215-1237.
- 13. Hicks, D.G., Boehly, T.R., Eggert, J.H. eta I. // Phys. Rev. Lett. 2006. V.97. P. 025502.
- 14. Hicks, D.G., Boehly, T.R., Celliers, P.M. et al. // Phys. Plasmas. 2005. V.12. P. 082702.
- 15. Laudernet, Y., Clerouin, J., Mazevet S. // Phys. Rev. B 2004. V. 70. P. 165108.

Спасибо за внимание!