WARM DENSE SILICA: ANALYSIS OF PROBLEMS AND APPLICABILITY LIMITS OF THE PSEUDOPOTENTIAL APPROACH

A.A. RYKOUNOV

Russian Federal Nuclear Center - All-Russian Research Institute of Technical Physics

Advantages of the DFT+PP approach

- 1. Electrons are treated as quantum particles to allow evaluation of exchange and correlation contributions to energy.
- 2. The approach, though with some ifs, can be referred to as ab initio because its input parameters only include data on system stoichiometry.
- 3. Compared to other ab initio approaches, the DFT+PP is relatively inexpensive computationally (a few hundred of atoms in the systems).
- Within Born-Oppenheimer quantum molecular dynamics, the approach allows analysis into the evolution of the system in time at finite pressures and temperatures.

DFT+PP limitations

I. From PP:

- Pressure cannot be increased arbitrarily.
- Temperature cannot be increased arbitrarily.

II. From DFT:

- The choice of form for the exchange-correlation functional
- Plane wave energy cutoff (basis set finiteness)

III. From Born-Oppenheimer molecular dynamics:

- Nuclei move as classical particles.
- The timestep significantly decreases as temperature grows.

Electronic specific heat as a criterion for PP applicability boundaries in temperature

With the growing temperature the contribution of internal electrons to specific heat starts to manifest itself in the deviation of the $C_V(T)$ curves from the all-electron calculation in pseudopotential approach.

Isotherm T = 0: α -quartz

F	2	G	Pa
•		-	

P, GPa

Experiment	B, GPa	B'	Calculation	B, GPa	B'
Vaidya et al. [1]	34.7±0.1	7.66±0.10	AM05	26.2±0.4	5.26±0.14
Olinger et al. [2]	38.0±2.3	5.80±0.82	LDA	32.4±0.7	5.95±0.26
Jorgensen [3]	36.4±0.4	6.49±0.40	PBE	39.5±1.5	4.12±0.35
d'Amour et al. [4]	37.5±10.3	5.55±4.81	PBESol	32.7±1.5	5.34±0.47
Levien et al. [5]	37.7±8.2	5.86±4.56	LDA [8,9]	38.1	3.90
Hazen et al. [6]	32.0±4.7	6.09±1.64			
Glinnemann et al. [7]	34.8±10.1	6.27±4.23			

Isotherm T = 0: stishovite

Experiment	B, GPa	B'	Calculation	B, GPa	Β'
Liu et al. [10]	343.1±24.2	4.86±3.11	LDA	310.7±0.6	4.59±0.04
Ross et al. [11]	312.2±8.5	1.82±1.29	AM05 (LDA PP)	287.7±0.5	4.75±0.04
Hemley et al. [12]	327.0±43.4	2.50±1.97	AM05 (GGA PP)	286.8±1.4	4.76±0.09
Sato [13]	298.7±10.0	0.60±2.21	PBE	281.0±0.6	4.30±0.17
			PBESol	294.8±1.1	4.59±0.08

α -quartz \rightarrow stishovite transition

Molecular dynamics simulation

- Systems of 72 atoms (24 molecules SiO₂) were used in simulations. Test calculations with a large cell (216 atoms) did not show noticeable differences in pressure and internal energy.
- The energy cutoff for the plane wave basis was 900 eV. A number of calculations were done for $E_{\rm cut}$ = 600 eV.
- Reciprocal space discretization was limited to the Γ-point (after tests on a 2x2x2 grid).
- The timestep was varied with temperature but did not exceed 1 fs.
- The exchange-correlation energy was represented by the PBE, AM05, and PBESol functionals.
- The effect of the stoichiometric composition on Hugoniot waveform was evaluated with a model mixture for which we took aluminum silicate (SiO₂)_{0.81}(Al₂O₃)_{0.19} with its density corresponding to that of SiO₂ under ambient conditions.
- Temperatures within 300 63000 K; densities within 1.585 7.943 g/cm³. The reference structure for Hugoniot construction was the structure of amorphized crystals resulted from melt cooling and equilibration at T = 300 K.

α-quartz principal Hugoniot

P, GPa

Radial distribution functions

References

- 1. Vaidya, S.N., Bailey, S., Pasternack, T., Kennedy G.C. // J. Geophys. Res. 1973. V. 78. Pp. 6893-6898.
- 2. Olinger, B., Halleck, P.M. // J. Geophys. Res. 1976. V. 81. Pp. 5711-5714.
- 3. Jorgensen, J.D. // J. Appl. Phys. 1978. V. 49. Pp. 5473-5478.
- 4. d'Amour, H., Denner, W., Schulz, H. // Acta Cryst. B. 1979. V. 35. Pp. 550-555.
- 5. Levien, L., Prewitt, C.T., Weidner, D.J. // Am. Miner. 1980. V. 65. Pp. 920-930.
- 6. Hazen, R.M., Finger, L.W., Hemley, R.J., Mao, H.K. // Solid State Commun. 1989. V. 72. Pp. 507-511.
- 7. Glinnemann, J., King Jr., H.E., Schulz, H. et al. // Z. Kristallogr. 1992. V. 198. Pp. 177-212.
- 8. Keskar, N.R., Chelikowsky, J.R. // Phys. Rev. B. 1992. V. 46. Pp. 1-13.
- 9. Chelikowsky, J.R., Binggeli, N., Keskar, N.R. // J. Alloys Comp. 1993. V. 197. Pp. 137-144.
- 10. Knudsen, M.D., Desjarlais, M.P. // Phys. Rev. Lett. 2009. V. 103. P. 225501.
- 11. Knudswn, M.D., Desjarlais, M.P. // Phys. Rev. B. 2013. V. 88. P. 184107.
- 12. Трунин Р.Ф. // УФН. 1994. Т. 164. С. 1215-1237.
- 13. Hicks, D.G., Boehly, T.R., Eggert, J.H. eta I. // Phys. Rev. Lett. 2006. V.97. P. 025502.
- 14. Hicks, D.G., Boehly, T.R., Celliers, P.M. et al. // Phys. Plasmas. 2005. V.12. P. 082702.
- 15. Laudernet, Y., Clerouin, J., Mazevet S. // Phys. Rev. B 2004. V. 70. P. 165108.

Thank you for your time!