

А. <u>Соловьев</u>¹, К. Бурдонов¹, А. Еремеев, В. Гинзбург, Е. Хазанов, А. Кочетков, А. Кузьмин, И. Шайкин, А. Шайкин, В. Яковлев, М. Стародубцев М. Алхимова, Т.Пикуз, Е. Филиппов, С. Пикуз, S. N. Chen^{1,2}, G. Revet², S. Pikuz³, E. Filippov³, M. Cerchez⁴, T. Gangly², and J. Fuchs^{1,2}

Исследования в области физики плазмы и ускорения частиц на субпетаваттном лазерном стенде PEARL

Соловьев А.А. ЗПЧ-2017

Collaborators

Соловьев А.А.¹ Бурдонов К.Ф.¹ Сладков А.Д.¹ Коржиманов А.В.¹ Гинзбург В.Н.¹ Хазанов Е.А.¹ Хазанов Е.А.¹ Кочетков А.А.¹ Кузьмин А.А.¹, Шайкин И.А.¹ Шайкин А.А.¹ Яковлев И.В.¹ Стародубцев М.В.

J. Fuchs^{1,2} Пикуз С.А.³ Скобелев И.Ю.³ Рязянцев С.Н.³ Алхимова М.А.³ Филиппов Е.Д.³ Пикуз Т.А.³

S. N. Chen^{1,2}

G. Revet²

A. Chiardi⁴ B. Khiar⁴

К.Л. Губский А.П. Кузнецов

Laser-plasma interaction: applications

- Laser driven acceleration
 - Particles acceleration
 - * X-ray generation.
- * Applications
 - * Radiotherapy
 - * Bio-imaging
- HED physics
 - LabAstro
 - * ICF

Sub-PW OPCPA PEARL laser facility

PEARL Ion acceleration

Ускорение протонов/ионов:

непрозрачная плазма (твердотельные мишени) острая фокусировка лазерного излучения (высокая I) высокий контраст лазерного излучения Адаптивная система

Accomplished experiments

Ion/proton acceleration at target/vacuum interface induced by laser-generated hot electrons in the present widely used regime: *Target Normal Sheath Acceleration*

Ion acceleration: X-ray spectrometry

Κα Li-like Heα 2p²- 1s2p Lyα 2.5 satt. 20 KL hollow Intensity (a.u.) 1.5 atoms KK hollow 1.0 0.5 recomb. cont (3^d order) $T_e = 300 \text{ eV}, n_e = 2e23 \text{ cm}$ 0.0 1750 1650 1700 1500 1550 1600 Photon energy (eV)

Focusing Spectrometer with Spatial Resolution (FSSR)

No signature of a significant preplasma at the target front:

the target remains at solid density by the time the main laser pulse arrives

Accomplished experiments

Ion/proton acceleration at target/vacuum interface induced by laser-generated hot electrons in the present widely used regime: *Target Normal Sheath Acceleration*

N	Deferre	Pulse energy	Pulse duration	Irradiance	Contract	Target and	Incidence	Proton/ion energy $\mathcal{E}_{p(i)}$,
INO.	Reference	$W_{\rm L}$ (J)	τ (IS)	$I_0 (\text{w cm}^2)^2$	Contrast	thickness (µm)	angle (°)	(Mev/nucleon)
1	Snavely et al (2000)	423	500	3×10^{20}	1×10^4	CH 100	0	58
2	Krushelnick et al (2000b)	50	1000	5×10^{19}	_	AI 125	45	30
3	Nemoto <i>et al</i> (2001)	4	400	6×10^{18}	5×10^{5}	Mylar 6	45	10
4	Mackinnon et al (2002)	10	100	1×10^{20}	1×10^{10}	AI 3	22	24
5	Patel et al (2003)	10	100	5×10^{18}		AI 20	0	12
6	Spencer et al (2003)	0.2	60	7×10^{18}	1×10^{6}	Mylar 23	0	1.5
7	Spencer et al (2003)	0.2	60	7×10^{18}	1×10^{6}	Al 12	0	0.9
8	McKenna et al (2004)	233	700	2×10^{20}	1×10^7	Fe 100	45	40
9	Kaluza <i>et al</i> (2004)	0.85	150	1.3×10^{19}	2×10^{7}	AI 20	30	4
10	Oishi et al (2005)	0.12	55	6×10^{18}	1×10^{5}	Cu 5	45	1.3
11	Fuchs et al (2006)	10	320	6×10^{19}	1×10^7	AI 20	0 and 40	20
12	Neely et al (2006)	0.3	33	1×10^{19}	1×10^{10}	Al 0.1	30	4
13	Willingale et al (2006)	340	1000	6×10^{20}	1×10^{5}	He jet 2000		10
14	Ceccotti et al (2007)	0.65	65	5×10^{18}	1×10^{10}	Mylar 0.1	45	5.25
15	Robson <i>et al</i> (2007)	310	1000	6×10^{20}	1×10^7	Al 10	45	55
16	Robson <i>et al</i> (2007)	160	1000	3.2×10^{20}	1×10^7	AI 10	45	38
17	Robson <i>et al</i> (2007)	30	1000	6×10^{19}	1×10^7	AI 10	45	16
18	Antici <i>et al</i> (2007)	1	320	1×10^{18}	1×10^{11}	Si ₃ N ₄ 0.03	0	7.3
19	Yogo <i>et al</i> (2007)	0.71	55	8×10^{18}	1×10^{6}	Cu 5	45	1.4
20	Yogo <i>et al</i> (2008)	0.8	45	1.5×10^{19}	2.5×10^{5}	Polyimide 7.5	45	3.8
21	Nishiuchi et al (2008)	1.7	34	3×10^{19}	2.5×10^{7}	Polyimide 7.5	45	4
22	Flippo <i>et al</i> (2008)	20	600	1.1×10^{19}	1×10^{6}	Flat-top cone Al 10	0	30
23	Safronov et al (2008)	6.5	900	1×10^{19}		AI 2	0	8
24	Henig et al (2009b)	0.7	45	5×10^{19}	1×10^{11}	DLC 0.0054	0	13
25	Fukuda <i>et al</i> (2009)	0.15	40	7×10^{17}	1×10^{6}	CO ₂ +He cluster jet 2000		10
26	Zeil et al (2010)	3	30	1×10^{21} 1()	2×10^8	Ti 2 μ m	45	17
27	Gaillard et al (2011)	82	670	1.5×10^{20}	1×10^9	Flat-top cone Cu 12.5	0	67.5

Laser-plasma interaction: applications

- Laser driven acceleration
 - Particles acceleration
 - * X-ray generation.
- * Applications
 - * Radiotherapy
 - * Bio-imaging

* HED physics* LabAstro

* ICF

Modeling of magneto-hydrodynamic plasma phenomena *

* Modeling of magneto-hydrodynamic plasma phenomena

* Modeling of magneto-hydrodynamic plasma phenomena

Ambient magnetic field

- Split pulsed solenoid
- Uniform configuration (20 T)
- "Zero-point" configuration

Laser plasma production

- PEARL pump laser (~100 J, 1 ns, 1054 nm)
- Solid-state targets

* Modeling of magneto-hydrodynamic plasma phenomena

¹⁵ Adapted from Camenzind, (1990).

 Modeling of magneto-hydrodynamic plasma phenomena: jet formation mechanisms

Laser-plasma plume propagating along the ambient magnetic field

Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field

B. Albertazzi *et al. Science* **346**, 325 (2014); DOI: 10.1126/science.1259694

* Modeling of magneto-hydrodynamic plasma phenomena

17 Adapted from Camenzind, (1990).

* Modeling of magneto-hydrodynamic plasma phenomena

Adapted from Camenzind, (1990).

 Modeling of magneto-hydrodynamic plasma phenomena: accretion disc edge dynamics

Laser-plasma plume propagating across the ambient magnetic field

Andrea Ciardi (2016)

expect:

plasma expansion across **B**₀ is limited by magnetic pressure

further plasma expansion is along \mathbf{B}_0

* Modeling of magneto-hydrodynamic plasma phenomena: accretion disc

16ns, 25J

* Modeling of magneto-hydrodynamic plasma phenomena: accretion disc

26ns, 25J

* Modeling of magneto-hydrodynamic plasma phenomena: accretion disc

Modeling of mag

tion disc

benomena: accretion disc

.**5**T

* Modeling of magneto-hydrodynamic plasma phenomena: accretion disc

6ns

16ns

26ns

36ns

Первичные данные недельной давности

* Modeling of magneto-hydrodynamic plasma phenomena

Main dynamics: RT instability ?

Side oscillations: KH instability ?

Where are the accretion columns ? Are the astrophysical accretion models correct ?

	Laboratory	CTTS
Incident stream	B-Field = $20T$	B-Field = $1 \times 10^{-3}T$
Material	C_2H_3Cl	Н
Electronic density $[n. cm^{-3}]$	1.5×10^{18}	1×10^{11}
Temperature [eV]	10	2.6×10^{-1}
Density $[g. cm^{-3}]$	8×10^{-6}	1.7×10^{-13}
Speed accertion flow $[km. s^{-1}]$	1000	500
Sound speed $[km.s^{-1}]$	21	13
Mach number	45	38
Reynolds	2×10^{6}	1×10^{9}
Peclet number	6×10^{3}	5×10^{7}
Magnetic Reynolds	2×10^{2}	1×10^{9}
β	1.5×10^{-2}	6×10^{-2}
l_c/L	7×10^{-3}	2×10^{-8}
Euler number $(v\sqrt{\rho/p})$	6×10^{1}	5×10^{1}
Alfven number $(B/\sqrt{\rho})$	2×10^{2}	1×10^{2}

Основные результаты

- Российский лазерный комплекс PEARL активно используктся для широкого спектра исспледоваий в области лазерной физики, физики плазмы, в частности среды с высокой плотностью энергии. В частности:
- Проведены экспериментальные исследования лазерного ускорения частиц (электронов и протонов), которые станут основой большого числа прикладных исследований в области медицины, НЕD физики и пр.
- * В настоящее время продолжаются экспериментальные исследования распространения плазмы поперек магнитного поля, способные пролить свет на фундамнтальные вопросы динамики образования звезд и ряда других актуальных задач.