

Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный технологический институт (технический университет)», СПбГТИ(ТУ)

ИМПУЛЬСНОЕ ФОТОВОЗБУЖДЕНИЕ НИТРОПРОИЗВОДНЫХ АЗОТИСТЫХ ГЕТЕРОЦИКЛОВ

ПОНЯЕВ А.И., ГЛУХОВА Я.С.

XIII Забабахинские научные чтения Снежинск – 2017

R = различные заместители; R₁ = H, OH, галогены, арил; R₂ = H, COOH, арил, пиридин.

Механизм фотохромных превращений 2,4,6-тринитротолуола

2,4,6-ТНТ Нитроновая кислота Анион

Максимумы спектров поглощения фотоиндуцированных форм производных нитротолуола

Соединение	Нитроновая кислота, нм	Анион, нм
2-нитротолуол	370	420
2,4-динитротолуол	420	530
2,6-динитротолуол	410	500
2,4,6-тринитротолуол	460	540

Константы скорости реакции обесцвечивания фотоиндуцированных форм производных нитротолуола

Соединение	Нитроновая кислота, с ⁻¹	Анион, с -1		
2-нитротолуол	7.6 10	1.9		
2,4-динитротолуол	6.5 10 ³	1.0		
2,6-динитротолуол	2 10 ³			
2,4,6-тринитротолуол	1 10 ³	1.74		

Установка импульсного фотолиза

Кинетические кривые

 $-\frac{d[c]}{d[t]} = k_1[c] + k_2[c]^2 + k_3[c]^3$

Орто-нитро-арилметильные производные

Схема фото- и темновых превращений

Графическое определение величины рКа равновесия (3)

$$pK_{a} = pH + \lg \frac{\varepsilon - \varepsilon_{B^{\pm}}}{\varepsilon_{B^{\pm}} - \varepsilon}$$

2-(2,4-динитро-бензил)-бензоксазол (**3**) 1 – длина волны зондирования 480 нм, 2 – 620 нм;

-бензотиазол (**4**) 3 – длина волны зондирования 535 нм, 4 –630 нм;

-бензимидазол (**2**) 5 – длина волны зондирования 520 нм, 6 – 590 нм в 50% водном спирте

$$\lg \frac{D - D_{B^{\pm}}}{D_{B^{-}} - D}$$
 ot pH

Замкнутая система кислотно-основных равновесий

B⁻

 $pK_a^1 + pK_a^2 = pK_a^3 + pK_a^4$

Фотохромизм четвертичной соли

Зависимость констант скоростей обесцвечивания фотоиндуцированных форм в водной соляной кислоте от рН

- 1 2-динитробензил-бензимидазол;
- 2 2-динитробензил-бензоксазол;
- 3—2-динитробензил-бензотиазол;
- 4 перхлорат 2-ДНБ-бензимидазолия

NO₂

Электронные спектры поглощения в 50% водноэтанольных растворах

OH⁻

 CH_2

Α

NO₂

1,2 — 2-(2,4-динитробензил)бензимидазол (1);
3,4 — 2-ДНБ-α-метил БИ (9);
5 —перхлорат 2-ДНББИмидазолия (14);
E=180 Дж, c=10⁻⁵ моль/л, 20°С, pH: 1 — 2.7; 2
— 9.1; 3 — 2.7; 4 — 8.9; 5 — 5.8; 6— анион (14) в 1 н. КОН, нормирован

B

Фотохромизм α-метилпроизводных бензимидазола

Спектры поглощения фотоиндуцированных форм 2-(αметил-2,4-динитробензил)бензимидазола (9) и 1-метил-2-(α-метил-2,4-динитробензил)бензимидазола (10) в 50% водно-этанольных буферных растворах.

1,3,5 –соединение (9) pH 2.75, 8.9, 6.5, соответственно; *2,4*– соединение (*10*) pH 2.73, 9.05, соответственно

Зависимость константы скорости обесцвечивания фотоиндуцированных форм 1-метил-2-(2,4динитробензил)бензимидазола (2) 1, 2-(α-метил-2,4-динитробензил)бензимидазола (9) 2 и 1-метил-2-(α-метил-2,4-динитробензил)бензимидазола (10) 3 в 50% водно-этанольных ацетат-фосфатборатных буферных растворах

pН

Длины волн максимумов полос поглощения фотоиндуцированных форм соединений (2, 3, 4, 12) в 50% водно-спиртовых буферных растворах с pH~4 и модельных азамероцианинов из производных этилроданина в этаноле

N⁰	X	λ _{max} , hm	λ _{max} , HM
1	NCH ₃	520	511
2	0	503	492
3	S	535	526
4	пиридин	567	542

Влияние аннелирования на фотохромные параметры

Фотохромные *орто*-метилнитробензазолы

17

26-28 X=NH, Y=N; 29-31 X= NCH₃, Y=⁺NCH₃; 32-34 X= NCH₃, Y=N 35-42 X=S, Y=N;

N⁰	\mathbb{R}^1	R ²	R ³	R ⁴	$\mathcal{N}_{\mathcal{O}}$	\mathbb{R}^1	R ²	R ³	R ⁴
26	NO ₂	CH ₃	NO ₂	Н	35	Н	Н	NO ₂	CH ₃
27	NO ₂	CH ₃	Н	Н	36	NO ₂	Н	NO ₂	CH ₃
28	Н	CH ₃	NO ₂	Н	37	Н	Н	CH ₃	NO ₂
29*	NO ₂	CH ₃	NO ₂	Н	38	NO ₂	CH ₃	CH ₃	Н
30*	NO ₂	CH ₃	Н	Н	39	Н	NO ₂	CH ₃	NO ₂
31*	Н	CH ₃	NO ₂	Н	40	Н	CH ₃	NO ₂	Н
32	NO ₂	CH ₃	NO ₂	Н	41	NO ₂	CH ₃	Н	Н
33	NO ₂	CH ₃	Н	Н	42	NO ₂	CH ₃	NO ₂	Н
34	Н	CH ₃	NO ₂	Н					

*- Четвертичные соли: 29,30 - метилсульфат, 31 - перхлорат

Фотохромные Нитрометил бензазолы

35

37

NO₂ H₃C S $O_2 N$

41

39

40

Фотохромизм 4,6-динитро-5-метилбензимидазола

Спектры поглощения фотоиндуцированных форм 4,6-динитро-5-метилбензимидазола (26) при различных значениях кислотности. $l - H^{\circ} 0.2 (H_2SO_4), 2 - pH 2.44$ универсальная буферная смесь (УБС), 3 - pH 7.96 УБС

Зависимость интегрального поглощения от структуры

Зависимость интегрального оптического поглощения S нитроновых кислот (•) и их анионов (•) от структуры изучаемых соединений в гептане и воде, соответственно. 2-НТ: 2-нитротолуол; 2,4-ДНТ: 2,4-динитротолуол; 2,4,6-ТНТ: 2,4,6-тринитротолул

Фотохромизм нитропиридилметилбензазолов

 $X = NH (46), NCH_3 (47),$ O (48), S (49)

 $1 (X = NH, R = NO_2); 2 (X = NCH_3, R = NO_2);$ $3 (X = O, R = NO_2); 4 (X = S, R = NO_2);$ 44 (X = NH, R = H); 45 (X = O, R = H);

Спектры поглощения фотоиндуцированных форм 1-метил-2-(3-нитро-2-пиридилметил)бензимидазола *1* – pH 1.04; *2* – pH 3.15; *3* – pH 4.3; *4* – pH 11.75; *5* – 2.5 н. КОН

Схема фотопревращений нитропиридилметилбензазолов

ФОТОХРОМНЫЙ ЦИКЛ

СПАСИБО ЗА ВНИМАНИЕ!

http://technolog.edu.ru

