

ПРЕДПРИЯТИЕ ГОСКОРПОРАЦИИ "РОСАТОМ"

ФГУП "ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ АВТОМАТИКИ им. Н.Л.Духова"

Прямое численное моделирование распространения оптических фотонов через порошковое вещество.

<u>А.Э. Муханов</u>, Д.Б. Рогозкин, mukhanov@vnii<mark>a.ru</mark>

План

- Цель и актуальность
- Постановка задачи
- Описание численного моделирования
- Сравнение с экспериментом
- Статистические данные на сетке
- Кинетика теплового разложения
- Распределение поглощённой энергии
- Выводы и перспективы

Цель и актуальность

Актуальность

Оптимизация светодетонатора (например, уменьшение пороговой энергии инициирования)

Цель

Модель распространения лазерного пучка через порошковое вещество. Описание разогрева вещества. Оценка возможности инициирования детонации при заданных энергиях в лазерном импульсе.

Постановка задачи

Исследуемое порошковое взрывчатое вещество

тэн (пентаэритрита тетранитрат, PETN) химическая формула C₅H₈N₄O₁₂, при н.у. кристалл с тетрагональной решёткой с двумя молекулами в элементарной ячейке (α-фаза/PETN-I)

Исследуемый спектральный диапазон и ожидаемые физические процессы

- Средний инфракрасный (ИК/IR/MIR) → как любое органическое соединение обладает сильным поглощением
- Ближний инфракрасный (NIR)
- Видимый (Vis)
- Ближний ультрафиолетовый (UV) → как большинство диэлектриков демонстрирует сильно поглощение, как только энергия фотона достигает ширины фундаментальной запрещённой зоны

Модели поглощения оптического излучения в среде

закон Бугера (прозрачные среды)
 Описание поглощения без учёта рассеяния

 уравнение переноса излучения (мутные среды)
 Описание поглощения в среднем, отсутствие флуктуаций, отсутствие необходимых характеристик среды (показателя рассеяния, индикатрисы рассеяния)

 Монте-Карло моделирование транспорта фотонов в среде с резкими вариациями показателя преломления
 Описание в рамках геометрической оптики

Схема численного моделирования методом Монте-Карло (Geant4*)

• библиотека Geant4: отслеживание фотона, построение среды, физическая оптика (закон Бугера, формулы Френеля)

• модель среды: случайно-ориентированные выпуклые многогранники

• геометрия: плоский слой (поперечные размеры в несколько раз больше толщины слоя)

• импульс лазера: одиночные фотоны, область возможных координат совпадает с диаметром пучка, распределение равномерное, нормальное падение на пластину

• влияние краёв: путём подсчёта фотонов, вылетающих через боковые поверхности параллельные пучку

Характеристики среды

Показатель преломления*

n_{тэн} = 1,55; n_{воздух} = 1

Показатель поглощения k_{тэн} = 0,3 мм⁻¹ (длина поглощения 3 мм)**

Размеры плоского слоя $0,4\times0,4\times0,2$ мм³

Длина волны: 1,06 мкм

Размеры частиц

однородное распеределение от 3 до 5 мкм, средний размер - 4 мкм

Фактор заполнения объёма частицами: 0,5

* Gibbs, Popolato, LASL Explosive Property Data, 1980; ** Хрулёва и др., Труды VII ЗНЧ, 2003

Коэффициенты отражения и прохождения

Толщина: 200 мкм

Численное моделирование: R = 0,78 ± 0,02

 $T = 0.06 \pm 0.02$

Эксперимент «на просвет» R = 0,94 ± 0.05 (5 %)

 $T = 0,0300 \pm 0.0015 (5 \%)$

 $A_{_{
m 3KC}}$ = 0,03 $A_{_{
m Teop}}$ = 0,16 ± 0,03 Толщина: 50 мкм

Численное моделирование: R = 0,58 \pm 0,07

 $T = 0.31 \pm 0.07$

Анализ статистики

Нагрев частиц порошка

Кинетика теплового разложения тэна**

Порог ~ 20 мДж, минимальное избыточное время (эксп.) ~ 120 нс при 41 мДж* *Renlund et al. Proc. of 9th Symposium (International) on Detonation, 2, 1118, 1989

Распределение «горячих точек» (поперечное) z = 4 мкм

Распределение «горячих точек» (продольное)

Выводы

• Распределение поглощённой энергии характеризуется существенной пространственной неоднородностью. Что приводит к появлению областей, нагретых до температур существенно превышающих средние по объёму значения

• Основная доля энергии поглощается на небольших расстояниях от границы. Характерная глубина распространения лазерного импульса может быть оценена по оказываемому тепловому воздействию (до температуры 900 К и выше разогреваются слои среды на глубине не более 40 мкм при энергии 20 мДж)

• «Горячие точки» с температурой 800 К и выше образуются на среднем расстоянии между ними ~ размеров частиц

• Среднее время реакции при температуре 800 К сопоставимо с временем индукционного периода, измеряемым в детонационных экспериментах

• Использование результатов в качестве распределённого источника для гидродинамического моделирования

• Исследование флуктуаций и случайных фокусировок

Благодарности

- Дмитрию Ивановичу Савину
- Илье Владимировичу Кудинову
- Алексею Витальевич Янилкину
- Сергею Евгеньевичу Куратову
- Игорю Владимировичу Туру

