

Изучение выброса микрочастиц из неоднородностей ударнонагруженных металлов с использованием синхротронного излучения.

Тен^{1,2} К.А., Прууэл^{1,4} Э.Р., Кашкаров^{1,4} А.О., Рубцов^{1,4} И.А., Шехтман^{2,4} Л.И., Жуланов^{2,4} В.В, Толочко³ Б.П., Музыря⁵ А.К.,Просвирнин⁵ К.М., Смирнов⁵ Е.Б., Смирнов⁵ В.Н., Столбиков⁵ М.Ю.

¹ Институт гидродинамики им. М.А.Лаврентьева СО РАН
 ² Институт ядерной физики им.Г.И. Будкера СО РАН
 ³ Институт химии твердого тела и механохимии СО РАН
 ⁴ Новосибирский Государственный Университет
 ⁵РФЯЦ-ВНИИТФ

Актуальность использования СИ для регистрации потоков микро и наночастиц.

- 1. Для получения сверхвысоких параметров в сплошной среде требуются большие скорости ударников. При больших ускорениях впереди ударника появляется поток микрочастиц (пыление).
- Существующие методики (особенно рентгеновские) плохо позволяют регистрировать потоки микрочастиц с линейной массой менее 0.01 г/см².
- 3. Синхротронное излучение может быть полезным ввиду мягкого энергетического спектра (до 30 кэВ) и возможности использования прецизионных рентгеновских детекторов.

Обзор работ по «пылению».

Во ВНИИЭФ [1,2], при помощи рентгенографической и пьезоэлектрической методик получены мгновенные распределения плотности частиц вылетающих со свободной поверхности свинца. Для получения удовлетворительного качества использовались протяженные канавки (щели). Сотрудниками LLNL проделаны эксперименты по

оптической регистрации пылевого потока [3].

- Антипов М.В., Георгиевская А. Б., Панов К.Н., и др..В. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ ПРОЦЕССА ВЫБРОСА ЧАСТИЦ СО СВОБОДНОЙ ПОВЕРХНОСТИ МЕТАЛЛОВ ПОД ДЕЙСТВИЕМ УДАРНОЙ ВОЛНЫ // Extreme states of substance. Detonation. Shock waves. Proceedings International conference XVII Khariton's topical scientific readings, March 23 – 27, 2015. RFNC-VNIIEF, Sarov.
 - 5. А.Л. Михайлов. В. Л. Огородников, В. С. Сасик и др,. Экспериментальное исследование процесса выброса частиц с ударно-нагруженной поверхности. // XV Международная конференция Харитоновские научно-тематические чтения «Экстремальное состояние вещества. Детонация. Ударные волны», г. Саров, 18-22 марта 2013 г. Стр. 279
 - M.B. Zellner. W. Vogan McNeil, J.E. Hammerberg et al. Probing the underlying physics of ejecta production from shocked Sn samples // Journal of applied physics, 103, 123502, 2008.

Стандартная постановка экспериментов.

•Вид с торца на свободную поверхность образца

Профиль возмущений на свободной поверхности.

Nº version	The roughness parameters FS			Н, мм	The pressure in			
	А, мкм	λ, мкм	L, мм		the explosion chamber, barr			
1	6	50	20	65	0.03			
2	60	250	5	28	0.038			
a_{-} the denth of the groove roughness								

a – the depth of the groove roughness, λ – the distance between the grooves

Цели и задачи.

Провести исследования потоков нано и микро частиц со свободной поверхности металлов при наличии сопряжений (стыков) различной формы.

- 1. Получить динамику распределения плотности вдоль потока микрочастиц образующихся из щелей (канавок) микронного размера.
- 2. Получить сравнительную динамику распределения плотности потока микрочастиц из стыков и сопряжений пластин.

Acceleration complex VEPP-3 - VEPP-4 is the basis of the experiments with HE.

Международная конференция «XIII Забабахинские научные чтения", 20-24 марта 2017 г., Снежинск, Россия

Experimental base in INP

Stand for study of detonation processes on VEPP-3 beam line 0

General view of the new station in the VEPP-4 bunker. 1 - unit of collimators, 2 explosion chamber, 3 - recording unit,

DIMEX - detector for study of the detonation processes.

Dependence efficiency of registration from photon energy.

General view of DIMEX. Channels size 100 мкм, Channel numbers – 512, number of frames – 100, time between frames – 125 нс.

Международная конференция «XIII Забабахинские научные чтения", 20-24 марта 2017 г., Снежинск, Россия

SSRC

Параметры СИ на ВЭПП-3 и ВЭПП-4.

Сравнение спектров из вигглеров на ВЭПП-3 (черные точки) и ВЭПП-4 (красные точки Е=4 Гэв, зеленые – Е=5 ГэВ).

Международная конференция «XIII Забабахинские научные чтения", 20-24 марта 2017 г., Снежинск, Россия

Постановка экспериментов.

Медные диски (диаметр 20 мм, толщина 2 мм) с канавками: (1) – 100 мкм, (2) – 50 мкм, (3) – 30 мкм. Экспериментальная сборка. 1 – взрывная линза, 2 – заряд ВВ (пластифицированный тэн, диаметр 20 мм, длина 20 мм), 3 – медный диск с канавкой.

Постановка экспериментов.

Рентгенографическая регистрация по

длине микроструи

Рентгенографическая тень полета диска. Х – направлена вдоль движения диска.

Микро-струи из канавок.

Динамика распределений массы вдоль струи . Струя движется слева направо. Канавка 30 мкм. Динамика распределений массы вдоль струи . Струя движется справа налево. Канавка 100 мкм.

Общий вид сборок для получения микроструй. Слева – прямой стык, справа – косой стык.

Динамика распределений массы вдоль струи . Прямой стык.

Международная конференция «XIII Забабахинские научные чтения", 20-24 марта 2017 г., Снежинск, Россия

Общий вид пластин со стыками: Слева – прямой стык, в центре – косой стык, справа – стык ступенькой. Медь – М1, диаметр 30 мм Общий вид сборок для исследования микроструй. Подложка – 12Н18Х10Т (h=0.5 мм). Прямой стык, медь М1 (h=2 мм)

Детальные рисунки стыков медных пластин. Слева – прямой стык, справа – косой стык. Детали крепились на подложку из 12H18X10T

Микро-струи из прямого стыка.

Динамика распределений массы струи от времени. Прямой стык. 1-3.5 мкс.

Динамика распределений массы струи от времени. Прямой стык. 10-13 мкс.

Микро-струи из прямого стыка.

14 Piston 12 Eject 10 D=4.33 X, mm 8 6 U=1.91 4 2 0 2 3 0 Time, µS

Х-t диаграмма положения диска и струи из стыков. 1-прямой, 2ступенька, 3-косой.

Х-t диаграмма положения диска и струи из отверстий.

	Масса струи, mg/мм				
Время			Ступенька		
	Прямои	КОСОИ			
t=1 mkS	0.454	0.242	0.323		
t=2 mkS	0.882	0.438	0.638		
t=3 mkS	1.221	0.668	0.944		
t=4 mkS	1.521	0.878	1.134		

Динамика массы потока частиц от времени для разных видов соединений. Масса приведена на 1 мм высоты струи.

Микро-струи из отверстий.

Общий вид алюминиевого диска с отверстиями диаметром 1 мм.

Динамика массы струи от времени для диска с отверстиями.

Выводы.

Проведены эксперименты по регистрации распределения массы вдоль струи из канавок и стыков различной формы.

1.Измерены скорости пластины и струи в зависимости от времени для канавок размером 30, 100 и 200 мкм.
2.Измерены скорости пластины и струи в зависимости от времени для стыков (соединений).
3.Получены распределения массы вдоль струи из канавок в зависимости от их ширины. Минимальная измеряемая линейная масса - 0.001 г/см²
4.Получены распределения массы вдоль струи из стыков. Наименьший выброс массы зарегистрирован из косого стыка.

Thank_you for your attention!

Микро-струи из отверстий.

Экспериментальная база.

Стенд по исследованию детонационных процессов на 0-м канале накопителя ВЭПП-3.

Общий вид новой станции в бункере ВЭПП-4. 1 – входная труба для СИ, 2 – блок коллиматоров, 3 – взрывная камера, 4 – блок регистрации, 5 – свинцовая ловушка

Микро-струи из гладких поверхностей.

Рентгенографическая тень полета диска. Х – направлена вдоль движения диска. U=2,4 км/с. Динамика распределений массы потока микрочастиц из олова. U=7,6 км/с.