

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

<u>РФЯЦ</u> ВНИИЭФ

Исследование на лазерной установке «Луч» критериев разрушения астероидоподобных тел разной формы, состава, микроструктуры и прочности при воздействии на них мощного импульсного излучения

XIII Забабахинские научные чтения, Снежинск, 2017г.

А.Ю. Аристова, В.А. Денисова, В.С. Дрожжин, А.А. Краюхин, В.В. Мисько, В.Г. Рогачёв, <u>П.В. Стародубцев</u>, С.Н. Стёпушкин, Ю.В. Скорочкин

Астероидная безопасность

Крупные каменные астероиды (80-90% от общего числа) хрупки и имеют низкий порог разрушения – 0.05-0.1 кбар, что позволяет рассчитывать на эффективное дробление астероидов ЯВ.

Представляется естественным моделировать воздействие ядерного взрыва на астероид воздействием короткого импульса лазерного излучения на миниатюрный макет астероида.

Картина протекающих процессов. Принцип подобия.

Развитие процесса точечного удара

- Точечное короткое выделение энергии, перераспределение энергии между основной частью астероида (мишени) и отделяющейся фракции;

 формирование тепловой волны, потеря части энергии за счёт излучения;

- формирование сильной ударной волны;

- уменьшение амплитуды ударной волны, переход к звуковым волнам, их интерференции и формированию зон разрывающего и сдвигового напряжения;

- затухание звуковых волн, окончание процесса разрушения;

- разлёт осколков.

Подобие мишеней и воздействия

Астероид и модель:

Одинаковый химический состав, плотность (*ρ*), прочность (*σ*), скорость звука в веществе (с).

Структурное подобие: Астероид (диаметр D=200 м; осколки d=5 м) ~ макет (D=4 мм; d=100 мкм)

Воздействие:

- точечное;
- мгновенное.

Следствием является равенство давлений $P_{aster} = P_{las}$, откуда по принципу подобия:

 $E_{las}/M_{las} = k * E_{aster}/M_{aster}$, где k – поправочный коэффициент, учитывающий разницу в процессах поглощения энергии.

- Проведение сопоставительных расчетов воздействия ЯВ на астероид и воздействия импульса ЛИ на макет, получение критерия моделирования.
- Разработка технологии изготовления макетов микро-астероидов и измерение их параметров.
- Проведение экспериментов с целью определения зависимости параметров разрушения астероидов от свойств материала, формы модели и условий выделения энергии.

Подобие газодинамических процессов в натурных и модельных условиях

Зависимости массовой скорости и давления от приведенного времени в центре эллипсоида

Проведены следующие сравнительные расчёты:

- лазерное излучение с энергией q = 600 Дж фокусируется на сужающейся части эллипсовидного имитатора астероида 3x6 мм;
- контактный ЯВ с энергией *q* = 7.45 Мт происходит на сужающейся части хондритного астероида с размерами 150х300 м.

Хондритные мишени

Параметры	Натур.	Макеты		
Химический состав,%	SiO ₂ – 40, MgO – 26, Fe ₂ O ₃ – 18, FeS - 6			
Форма	Шар, эллип	с, с каверной		
d, мкм	~1000	1-125		
	3,2-4,0	2,0-2,6		
с, м/с	3000-7000	3150		
🛙 на суатио	90-500	65-1350		
🛛 на	10-60	≈9,5 кгс/см²		

Натуральный Искусственный

Диаграмма сжатия образца с дисперсностью SiO₂ d<125 мкм

растяжение,

Макет ледяного

Состав железного образца

Схема	установки ледяных
	мишеней

Vuortova	Массовое содержание, %						
у часток анализа	С	Si	S	V	Cr	Mn	Fe
1(средний)	~2	0,8	0,2	0,3	0,4	0,5	95,8
2(матрица)	~5			0,6	0,6		90,6
3(матрица)		1,8					98,2
4(включение)		0,4	28,1			42,2	29,3

4

1 – мишень (диаметр 1 см), 2 - медный стержень, 3 - сосуд из фторопласта, 4 - вода.

Макет железного астероида d≈3 мм

Принципиальная схема эксперимента

- 1) объектив;
- 2) микромодель;
- 3) улавливатель осколков;
- 4) электро-оптический преобразователь;
- 5) лампа-вспышка;
- 6) камера обскура;
- 7) коллиматор PDV.

Значения параметров ЛИ

Параметр	Значение
на выходе	
усилительного канала в	<1200 Дж
основной частоте, Е _{1∞}	
преобразованное	<600 Пw
излучение, Е _{2∞}	~000 дж
на мишени, Е _{м2 ю}	<500 Дж
<mark>длительность импульса</mark> на λ=0,527 мкм, τ _{0,5}	1,4-2,2 нс
по энергии, К _е	>10⁵
по мощности, К _Р	>10⁵
пятно облучения, $arnothing$	>100-120 мкм
средняя интенсивность	<1,6·10¹⁵
в пятне, I	Вт/см ²

Диагностические методики в эксперименте

Измеряемый параметр	Диагностика	Метод измерения
Параметры лазерного излучения	Стандартные диагностики	Ближняя и дальняя зоны, контраст, форма импульса, энергия, эквивалентная плоскость
Пятно облучения, размер, структура	Рентгеновская камера-обскура	Измерение свечения вторичного излучения из пятна облучения
- Динамика разлета продуктов разрушения мишени:	Теневая регистрация с использованием 9-и кадровой «лупы времени» на базе ЭОП	Боковая подсветка мишени синхронизированным импульсным источником
- Диаграмма направленности разлета осколков; - Массово-габаритные	Измерение скорости движения осколков методикой PDV	Тыльная лазерная подсветка мишени с регистрацией распределения скоростей движения осколков
характеристики осколков - Распределение осколков по скоростям и размерам	Отбор проб, Теневая регистрация	Взвешивание мишени и ее осколков. Построение гистограммы распределения осколков по размерам

Параметры «лупы времени»

Параметр	Значения
Диапазон измерений, мс	0,1-1
Время экспозиции 1 кадра, мкс	1-10
Время между кадрами, мкс	10-100
Динамический диапазон, мкс	10 ⁴
Количество кадров, шт	9

Коррекция дисторсии ЭОП

Разлёт мишени

Динамика разлёта эллипсовидной мишени в эксперименте от 22.01.2016

Кадры ЭОП 80-80-1

Мишень до опыта

Осколки мишени после опыта (Е/М ≈ 1300 Дж/г)

Динамика разлёта эллипсовидной мишени в эксперименте от 22.01.2016

Кадры ЭОП 80-80-1

Осколки мишени после опыта (Е/М ≈ 1300 Дж/г)

Динамика разлёта ледяной мишени в эксперименте от 02.09.2016

Кадры ЭОП 550-70-1

Мишень до опыта

ДиаметрD ≈ 12 мм Масса М ≈ 0,8 г Удельная энергия Е/М ≈ 250 Дж/г

Динамика разлёта ледяной мишени в эксперименте от 02.09.2016

Кадры ЭОП 550-70-1

Мишень до опыта

ДиаметрD ≈ 12 мм Масса М ≈ 0,8 г Удельная энергия Е/М ≈ 250 Дж/г

Обскурограммы и регистрация PDV

Характерные обсурограмма и изоуровни пятна

Площадь пятна *S*_{0.5}=3,6⋅10⁻⁴ см² и эквивалентный диаметр круглого пятна *d*_{эке}=214 мкм.

Регистрация лазерным оптогетеродинным методом PDV

Зарегистрирован полет крупного осколка астероида, имеющего скорость 4,5-7 м/с.

Паспорт эксперимента от 27.01.2016 (исходные данные)

Мишен	Ь		Параме
Тип «Хондрит 1»	Состав по массе:	Длина	а волны обл
	SiO ₂ -43,5%	ş	Е _{1ω} , Дж
	MgO-28,5% Fe ₂ O ₃ -20,5%	Tepr	Е _{2ω,} Дж
		Ē	Е _{2ю на мишен}
and want the	Fe3-6,5%	H He	1ω: τ _{0,5} , но
	Размер фрагментов:	мен	2ω: τ _{0,5} , не
	Min. – 1 мкм	Bpe	Контраст
	Aver. – 80 мкм	, си Ка	Фокусиро
Диаметр d, мм	2,5x6	фоку	Пятно рас
Плотность ρ, г/см³	2,25	L.	Расчетная
Масса т, г	0,0828	eH CM	По данны
Место прицеливания	торец	Ϋ́Ξ	Средняя*,
Каверна, d/h, мм	отсутствует	ž	Коэффици
Статическая прочность, S=221 кгс/см ²		Энері	Е _{поглощённа}
(испытания проводились на представительском образце, взятом из данной серии).	ЛИМ	* Размер по полувыс пятна рассчитан как (

Параметры лазерного излучения				
Длина волны облучения - 2ω, нм 0,527				
ВИ	Е ₁₀ , Дж	625		
Iepr	Е _{2ω,} Дж	262		
ŧ.	Е _{2ω на мишени} , Дж	216		
Hble T.	1ω: τ _{0,5} , нс	1,8		
рак	2ω: τ _{0,5} , нс	1,8		
Bpei	ອີ້ Контраст 1ω: К _Р			
уси-	Фокусировка	Острая		
роб	Пятно расчетное Ø _{0,5} , мкм	100		
ы Расчетная, Вт/см²		1,5·10 ¹⁵		
GHCM	По данным обскуры, Вт/см ²	3,3·10 ¹⁴		
ž	Средняя*, Вт/см²	6,2·10 ¹⁴		
ГИЯ	Коэффициент поглощения			
а Е Епоглощённая, Дж				
* Размер по полувысоте составляет 214 мкм, средний размер пятна рассчитан как (213+100)/2.				

Паспорт эксперимента от 27.01.2016 (результаты)

Данные измерения динамики разлета продуктов мишени с использованием ЭОП в режиме «лупа времени»

ТТХ съемки:

- начало съёмки 80 мкс.
- между кадрами 80 мкс.
- экспозиция 1мкс.

Данные измерений методики PDV

Стандартная регистрация полета целикового осколка. 8,5 м/с

Результаты облучения компактных мишеней (хондрит) с d < 125 мкм и 🗆 = 225 кгс/см²

		Масса		
Е _м /m, Дж/г	Количество, шт.	Масса, г	Доля от исходной массы, %	мелких осколков, г
1900	Нет	-	-	0,0434
850	Нет	-	-	0,0417
740	Нет	-	-	0,0849
780	Нет	-	-	0,0806
540	2	0,0343/0,0248	24/17	0,0485
510	1	0,0918	48	0,0482
430	Нет	-	-	0,1462
500	1	0,0870	35	0,1127

Результаты экспериментов с хондритными мишенями, 🗆 = 225 кгс/см²

Результаты, полученные при варьировании типов мишеней и условий облучения

- О Для хондритных мишеней эллипсоидальной формы с □ = 225 кгс/см² и соотношением осей 1 к 2 при фокусировке ЛИ на сужающейся части мишени на оси симметрии порог разрушения составил 3000 Дж/г.
- О Для имитации «заглубленного» взрыва в мишенях предварительно делались каверны глубиной 500 мкм и диаметром 400 мкм; излучение фокусировалось на дно каверны. Выигрыш в удельной энергии ≈ 25%.
- В экспериментах с облучением мишеней несколькими последовательными либо одновременными импульсами выигрыша в энергии по сравнению с одиночным мощным импульсом суммарной энергии не наблюдалось.
- Для сферических мишеней из железного сплава порог разрушения составил 3000 – 4000 Дж/г
- Ледяные мишени разрушались при удельных энергиях в 15-40 Дж/г.

500 0 65 кгс/см² 225 кгс/см² 1341 кгс/см² 1341 кгс/см² 225 кгс/см² 341 кгс/см² 1341 кгс/см² 341 кгс/см

Сравнительная гистограмма критериев разрушения хондритных мишеней

Выводы

- Получено обоснование способа моделирования гидродинамических процессов при ядерном взрыве на поверхности реального астероида импульсом лазерного излучения, сфокусированного на поверхности искусственной микромодели.
- Разработаны технологии изготовления хондритных микромоделей астероидов с заданными параметрами.
- Проведены исследования железных сплавов, имитирующих железноникелевый астероид.
- Отработана схема создания имитатора ледяного астероида в вакуумной камере.
- Для разных микромоделей астероидов в лазерных экспериментах получены приближённые критерии разрушения в зависимости от микроструктуры, прочности, формы моделей и условий облучения.
- Результаты согласуются с результатами, полученными в ходе предварительных экспериментов на установке Искра-5 и Луч.

СПАСИБО ЗА ВНИМАНИЕ