ТЕМПЕРАТУРНО-ДЕФОРМАЦИОННЫЕ ЭФФЕКТЫ ПРИ СХОЖДЕНИИ СТАЛЬНОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ

<u>А.Э. Хейфец</u>, В.И. Зельдович, Н.Ю. Фролова, С.М. Долгих*, К.В. Гаан*, Е.В. Шорохов*

ИФМ УрО РАН (Екатеринбург) *РФЯЦ ВНИИ Технической Физики (Снежинск)

- Методика проведения эксперимента
- Регистрация схлопывания
- Исследование макро- и микроструктуры
- Расчет деформации и температуры
- О формировании структуры «баротермической закалки»
- Заключение

Экспериментальный узел

- 1 наружная оболочка (сталь 20) 2 – внутренняя оболочка (сталь 20)
- 3 BB
- 4 высокочувствительное ВВ
- 5 кольцевая система инициирования
- 6 защитный диск
- 7 электроконтактные датчики
- 8 устройство крепления ЭК-датчиков
- 9 волоконно-оптические датчики

Особенности эксперимента

• Большая толщина стенок оболочки. Можно изучать эффекты локализации деформации на макроскопическом и мезоскопическом уровнях

• Величина заряда подобрана таким образом, что оболочка схлопывается до конца, но к моменту схлопывания вся энергия оказывается «израсходованной». Т.е. нет эффектов отражения

• Регистрация движения оболочки проведена с высокой точностью

• Использование хорошо изученного «модельного» материала (сталь 20) и «металловедческих» методов анализа остаточных изменений в микроструктуре позволяет получать дополнительные сведения, касающиеся динамики процесса

- Методика проведения эксперимента
- Регистрация схлопывания
- Исследование макро- и микроструктуры
- Расчет деформации и температуры
- О формировании структуры «баротермической закалки»
- Заключение

Рентгеновский снимок процесса схождения оболочки и его схема

На схеме штриховыми линиями отмечен фронт детонационной волны. Перед фронтом видно положение внутренней и наружной оболочек (труб) до нагружения.

После нагружения получился сплошной цилиндр. Время схождения – 30 мкс

- Методика проведения эксперимента
- Регистрация схлопывания
- Исследование макро- и микроструктуры
- Расчет деформации и температуры
- О формировании структуры «баротермической закалки»
- Заключение

Граница 1-й и 2-й зон (а) и микроструктура 1-й(б) и 2-й зоны (в,г)

- Методика проведения эксперимента
- Регистрация схлопывания
- Исследование макро- и микроструктуры
- Расчет деформации и температуры
- О формировании структуры «баротермической закалки»
- Заключение

Радиальная деформация

Взаимосвязь расположения материальных точек на оболочке (r) и на цилиндре (R)

Зависимость истинной деформации от радиуса

Осевая деформация

Схема расчета осевой деформации

Радиальная зависимость осевой деформации

Радиальная зависимость температуры

Температура непосредственно после нагружения (кривая 1), а также через 1, 3, 10, 60 и 300 секунд после нагружения (кривые 2 – 6)

- Методика проведения эксперимента
- Регистрация схлопывания
- Исследование макро- и микроструктуры
- Расчет деформации и температуры
- О формировании структуры «баротермической закалки»
- Заключение

Дефрмация феррито-перлитной структуры

Сталь 20

Сталь 40

Бабич В.К., Гуль Ю.П., Долженков И.Е. Деформационное старение стали, 1972 Maurer K.L. Berg. und Huttenmannische Monatshefte, 1965, Bd 110, N7, S.200

Высокоскоростная дефрмация

100 мкс, 700°С

30 мкс, 900°С

Селективный тепловой эффект деформации

Высокоскоростная дефрмация

Заключение

Показано, что на стадии инерционного схождения оболочки деформация, скорость деформации и температура плавно увеличиваются при движении вдоль раднуса к оси полученного в результате схлопывания цилиндра. Это приводит к формированию концентрических кольцевых зон с измененной микроструктурой. Первая (внешняя) зона сохранила исходную феррито-перлитную структуру со следами деформации и $\alpha \rightarrow \varepsilon \rightarrow \alpha$ цикла превращений; микротвердость в этой зоне составляет 2000 – 2300 МПа. Вторая зона под действием реализованной в опыте специфической высокоскоростной деформации приобрела необычную структуру баротермической закалки, микротвёрдость которой соответствует микротвёрдости закалённой стали (~3500 МПа). В третьей (центральной) зоне дальнейшее увеличение деформации и, как следствие, температуры привело к разупрочнению материала до исходного уровня твёрдости отожженной стали (~1500 МПа).

Заключение

Установлено, что полученная во второй зоне структура баротермической закалки 2. состоит из дисперсных кристаллов α-фазы, возникших при закалке свободного феррита, и участков сохранившегося исходного перлита. Необычное поведение превращения, при котором сначала превращение происходит в перлите) объясняется спецификой теплового эффекта реализованной в опыте высокоскоростной деформации. Различные структурные составляющие исходной феррито-перлитной структуры деформировались независимо. При этом, более мягкий феррит деформировался и, следовательно, нагревался значительно сильнее (вплоть до попадания ү-область Т-Р диаграммы), чем более твёрдый перлит. То есть, различные структурные составляющие стали (феррит и перлит) в ходе эксперимента подвергались разному воздействию и пересекали разные области Т-Р диаграммы.

Благодарю за внимание!

Зависимость внутреннего (кривая 1) и наружного радиусов оболочки (кривая 2) в одном сечении от времени схождения (рентгеновская регистрация)

Зависимости положения точек оболочки, расположенных на различных радиусах, от времени схождения, полученные из кривой 2 и условия сохранения объема вещества

Макроструктура продольного и поперечного сечений схлопнутого цилиндра. Стрелки показывают направление течения

1 — зона с локализованной деформацией 2 — зона «баротермической закалки»

3 – зона рекристаллизации

4 – зона неустойчивости

Радиальная зависимость температуры и логарифмической деформации.

В центральной части образца – зона неустойчивого течения

Структура первой зоны

Общий вид, феррит со следами α→ε→α превращений и перлит

Субмикрокристаллическая структура феррита (светлопольный и темнопольный снимки) и перлит

Структура второй зоны

Переход к третьей зоне

Рекристаллизованные зерна феррита, перлит и граница феррит/перлит

Структура третьей зоны

Образование нового перлита и сфероидизация цементита