Institute of Theoretical and Mathematical Physics

Russian Federal Nuclear Center -

VNIEF

Аналитическое и численное решения с использованием k-є модели турбулентности задачи гравитационного перемешивания лёгкого слоя

О.Г.Синькова, В.П.Стаценко, Ю.В. Янилкин

О к-є модели в коде ЭГАК

$$\frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_{k}}(\rho k u_{k}) = (G_{1} + G_{2}) - \rho \varepsilon + \frac{\partial}{\partial x_{k}}\left(\frac{\rho D}{\sigma_{k}} \cdot \frac{\partial k}{\partial x_{k}}\right)$$
$$\frac{\partial}{\partial t}(\rho \varepsilon) + \frac{\partial}{\partial x_{k}}(\rho \varepsilon u_{k}) = \frac{\varepsilon}{k}(c_{\varepsilon 1}G_{1} + c_{\varepsilon 3}G_{2} - c_{\varepsilon 2}\rho\varepsilon) + \frac{\partial}{\partial x_{k}}\left(\frac{\rho D}{\sigma_{\varepsilon}}\frac{\partial \varepsilon}{\partial x_{k}}\right)$$
$$D = c_{D}\frac{k^{2}}{\varepsilon}$$

Коэффициенты: $c_D, \sigma_m, \sigma_h, \sigma_k, \sigma_{\varepsilon}, c_{\varepsilon 1}, c_{\varepsilon 2}, c_{\varepsilon 3}$

	\mathcal{C}_D	σ_k	σ_{ϵ}	$C_{\epsilon 1}$	$C_{\epsilon 3}$	σ_h	σ_{m}	C _{ε2}
Стандартный (1-4)	0.09	1	1.3	1.44	1.44	0.9	0.9	1.92
ЭГАК (5)	0.12	3/4	3/4	1.15	1	1/1.7	1/1.7	1.7

1.1. Launder, B.E., and Spalding, D.B. // Comp. Meth. In Appl. Mech. And Eng. 1974. 2. Rodi W. // Proc. 2nd Symp. on Turbulent Shear Flows, 1979.

2.3. Tahry, S.H. //AIAA, J. Energy. 1983.

4. Llor A. Lect. Notes Phys., 2005.

5. Гужова А.Р., Павлунин А.С., Стаценко В.П. // ВАНТ, сер. ТПФ, 2005.²

Постановка задачи

$$\rho_0 = 3$$
, $P_0 = 16$, 106

Аналитическое решение автомодельной стадии течения

Эксперименты

В экспериментах^{*} измерялась скорость роста ширины ЗТП на автомодельной стадии (когда скорость константа)

$$b = \frac{dL^*}{dt}; \qquad L^* = \frac{L_t}{\sqrt{d \cdot \left|g_y \cdot (1 - \rho_1 / \rho_0)\right|}} = \frac{L_t}{B}$$
(1)

Экспериментальные данные: b=0.35-0.37.

Аналитическое решение уравнений k-є модели

$$b = (c_{\varepsilon 2} - 1) \sqrt{\frac{2 \cdot c_D}{c_{\varepsilon 2} \cdot \sigma_h}}$$
(2)

Аналитическое решение: для наших коэффициентов **b=0.343** для стандартных коэффициентов **b=0.164**

* Kucherenko Yu.A., Balabin S.I., Pylaev A.P. // 4th International Workshop on The Physics of Compressible Turbulent Mixing, 1993.

Постановка 1D расчетов с к-є моделью

. Число ячеек - 1000:

Фоновые значения турбулентной энергии и скорости её диссипации

$$k_{ph} = \varepsilon_{ph} = 10^{-11}$$

В легком слое задавались начальные значения турбулентной энергии и скорости её диссипации:

$$k_0 = 10^{-3}$$
 $\varepsilon_0 = 0.025$

Результаты 1D расчётов с к-є моделью

№ варианта	Коэффициенты модели	Начальное давление Р ₀	b
1	Стандартные коэффициенты	16	0.1
2	Наши коэффициенты	16	0.3
3	Наши коэффициенты	106	0.3
4	Стандартные коэффициенты	106	0.1

Результаты 1D расчетов с к-є моделью

1, 2 – расчёты с нашими коэффициентами; 3, 4 – расчёты со «стандартными» коэффициентами.

Результаты 1D расчетов с к-є моделью

Максимальные в ЗТП значения к и є

Результаты 1D расчетов с k-г моделью

Автомодельный профиль плотности

1 – расчёт, 2 – аналитика

Результаты 1D расчетов с к-є моделью

Автомодельные профили к и є

1 – расчёт, 2 – аналитика

Постановка 3D расчётов

L = 2

В лёгком слое, при *y*₁<*y*<*y*₂:

 $\rho = \rho_1 = 0.5,$ $y_2 \equiv y_1 + d,$ $y_1 = 0.5,$ d = 0.05.

P₀=30 и 100

Варианты 3D расчётов и ширина 3TП

№ варианта	$N_x \times N_y \times N_z$	P ₀	b
5	400 x 400 x 400	30	0.43
6	400 x 400 x 400	100	0.435
7	200 x 200 x 200	30	0.38
8	200 x 200 x 200	100	0.38

Растровые картины объемной концентрации вещества легкого слоя (расчет 6)

t=15

t=20

Растровые картины объемной концентрации вещества легкого слоя в 2D сечении x=1

Прямыми линиями указаны начальные положения КГ слоя. ¹⁴

Ширина ЗТП в 3D расчётах

1, 2 – расчёты 5, 6 (N=400); 3, 4 – расчёты 7, 8 (N=200)

Максимальное в ЗТП значение турбулентной энергии в 3D расчётах в сравнении с k-£

1, 2 – расчёты 5, 6; 3, 4 – расчёты 7, 8

Автомодельная плотность в 3D расчётах в сравнении с k-є

1-3D расчет 5; 2-3D расчет 6; 3-расчёт 3 (k-є)

Турбулентная энергия в 3D расчётах в сравнении с k-є

1-3D расчет 5; 2-3D расчет 6; 3-расчёт 3 (k-є)

Основные результаты по скорости роста ширины ЗТП

	коэффициенты	число ячеек	b
3D (DNS)	-	400 ³	0.43
1D (к-є модель)	стандартные	1000	0.1
1D (к- є модель)	наши	1000	0.3
аналитика	стандартные	-	0.164
аналитика	наши	-	0.343
опыты			0.35÷0.37

$$b = (c_{\varepsilon^2} - 1) \sqrt{\frac{2 \cdot c_D}{c_{\varepsilon^2} \cdot \sigma_h}}$$

Спасибо за внимание!