

им. академика Е.И.Забабахина

РФЯЦ-ВНИИТФ

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ГИДРОДИНАМИЧЕСКИХ НЕУСТОЙЧИВОСТЕЙ И ПЕРЕМЕШИВАНИЯ ПРИ СЖАТИИ ГАЗОНАПОЛНЕННЫХ ОБОЛОЧЕК В ОПЫТАХ, ПРОВЕДЕННЫХ НА УСТАНОВКЕ NIF

В.А.Лыков, Е.С.Бакуркина, Н.Г.Карлыханов, Г.Н.Рыкованов, Л.В.Соколов, В.Е.Черняков, А.Н.Шушлебин

Международная конференция XIII Забабахинские научные чтения

Снежинск, 21 марта 2017

Содержание доклада

введение

- 1. Результаты экспериментов, проведенных на установке NIF с целью изучения атомарного перемешивания в мишенях ИТС.
- 2. 1D -моделирование перемешивания в экспериментах с оболочками по ка-модели турбулентного перемешивания.
- 3. 2D моделирование по программе ТИГР-ОМЕГА-3Т влияния асимметрии облучения на сжатие газонаполненных оболочек.
- 4. Моделирование развития коротковолновых возмущений при сжатии газонаполненных оболочек по программе ТИГР-3Т.

выводы

John Lindl, Otto Landen, John Edwards, Ed Moses, and NIC Team, Review of the National Ignition Campaign 2009-2012, Physics of Plasmas 21, 020501 (2014).

Эксперименты, проведенные на установке NIF с целью изучения атомарного перемешивания в мишенях ИTC.

Цилиндрический хольраум из золота (слева). В центре хольраума размещена мишень, конструкция которой показана справа. Справа внизу – фотография сборки, которая использовалась в опыте N121119 на установке NIF^{*)}

D.T. Casey, et al, Physics of Plasmas 21, 092705 (2014)

Мощность лазерного излучения NIF и температура излучения в хольрауме

Полная мощность лазерной энергии от времени в опыте N130512 при пиковом значении 436 ТВт -черная линия. Мощность лазерного излучения во внутреннем и внешнем конусе лазерных пучков - зеленая и синяя линии. Зависимость температуры излучения хольраума от времени – красная линия

D.T. Casey, et al, Physics of Plasmas **21**, 092705 (2014).

Спектры нейтронов в опытах на лазере Рояц-вниито NIF с оболочками, заполненными Т₂-газом

 $D + T \rightarrow n(14.1MeV) + {}_{2}^{4}He$ $T + T \rightarrow 2n(0 \div 9.4MeV) + {}_{2}^{4}He$ $Y_{DT} \approx n_{D}n_{T} < \sigma v >_{DT} V_{mix}t_{mix} + Y_{DT-\phi o H}$ $<\sigma v >_{DT} - \text{скорость ДТ-реакции}$ $n_{D}, n_{T} - \text{концентрации D и T}$ V_{mix} - объем смеси t_{mix} - время протекания реакции $Y_{DT-\phi o H}$ - фон ДТ-нейтронов от примеси D в T₂-газе (<0.15%)

Нейтронные спектры^{*)}, зарегистрированные в контрольном опыте без CDслоя (№121119) и в опыте с CD- слоем на границе с Т-газом (№121125).

Выходы ТТ- и ДТ- нейтронов в опытах на NIF рояц-внито с оболочками, заполненными Т₂-газом.

- a) Выход ТТ-нейтронов для СН-оболочек, заполненных тритием (черные метки) и в опытах с CD-слоем, который был размещен на разной глубине СН-оболочки (красные метки). Синяя линия - 2D-расчеты по программе ARES.
- b) Выход ДТ-нейтронов для контрольных экспериментов (без CD-слоя) и опытов с CD-слоем. Синяя линия 2D-расчеты по программе ARES.

*) D.T. Casey, et al, Physics of Plasmas **21**, 092705 (2014)

Выходов ДТ-нейтронов и температура ионов в опытах на лазере NIF с оболочками, заполненными Т₂-газом.

- а) Отношение выходов ДТ- и ТТ- нейтронов при разной глубине размещения слоя CD толщиной 4 мкм в оболочке из CH.
- b) Температура ионов, определенная по Допплеровскому уширению ДТнейтронов. Синяя линия - 2D-расчеты по программе ARES

Определение массы CD, атомарно смешанной с тритием и вступившей в ДТ- реакцию при температуре 2 кэВ

Масса атомарно перемешанного с тритием слоя CD, вступившего в ДТреакцию, в зависимости от места его размещения в CH -оболочке. Черная пунктирная кривая отвечает полной массе CD, вступившей в ДТреакции, *m_{CD}*~ 820 нг с масштабом перемешивания *L_{mix}*~2,1 мкм

Компьютерные программы РФЯЦ-ВНИИТФ для моделирования ИТС - мишеней

Название	ЭРА	ТИГР-ОМЕГА
Число измерений	1D	2D
2-температурная модель для электронов и ионов	+	+
Перенос излучения	Спектральный кинетический	Эффективная температура
Теплопроводность	e, i	e, i
Турбулентное перемешивания	+	+
Термоядерные реакции и перенос их продуктов	+	+
Модель поглощения лазерного излучения	+	+/-
Генерация и перенос быстрых электронов	+	-

Уравнения состояния и пробеги излучения - из библиотеки РФЯЦ-ВНИИТФ

Е.Н.Аврорин и др. Вопросы современной технической физики. Избранные труды РФЯЦ-ВНИИТФ. Стр. 252-276. Издательство РФЯЦ-ВНИИТФ. Снежинск, 2002.

Распределение плотности в зависимости от времени в лагранжевых (слева) и эйлеровых координата (справа) в 1D-расчете газонаполненной оболочки

*) Неуважаев В.Е., Яковлев В.Г. Расчет гравитационного турбулентного перемешивания по кɛ-модели// ВАНТ. Сер. Мат. моделирование физических процессов. 1989. Вып. 1. С. 28-36.

1D -моделирование турбулентного перемешивания в контрольных экспериментах по *kɛ*-модели^{*)}

	D _{0.0001} Т _{0.9999} 0,011 г/см ³	СН	(C	CH IIII	СН		
F	8 0,9	28	0,932	0,934		1,137 n	1M
nn	# опыта/ <i>L₀</i> в расчете	N _{dt} 10 ¹³	N _{tt} 10 ¹³	Т _{i,dt} кэВ	ρ _{max} г/см ³	M _{clean} %	<i>L</i> _{1/e} μm
1	# 120904	0,41	2,2	3,4	50	-	2,1
2	# 121119	0,40	2,1	3,5	41	-	2,1
3	без тіх	0,25	11	3,3	35	100	-
4	автомод.	0,22	10	3,2	44	41	1,9
5	$L_0=2 \mu m$	0,19	8,5	3,0	52	31	2,3

Здесь: Ndt и Ntt – выходы ДТ- и ТТ- нейтронов;

T_{i,dt}-экспериментальная и расчетная температура ионов при сжатии газа;

ρ_{max} - экспериментальное и расчетная плотности сжатого газа;

M_{clean} (%) – масса газа, свободная от СН (по уровню концентрации 95%);

L_{1/e} (μm) –перемешанная толщина оболочки по уровню концентрации 1/е. В расчете начальная концентрация D занижена в ~ 6 раз.

Расчетный выход нейтронов слабо зависит от перемешивания и ~5 раз выше экспериментального

*) Неуважаев В.Е., Яковлев В.Г. Расчет гравитационного турбулентного перемешивания по кє-модели// ВАНТ. Сер. Мат. моделирование физических процессов. 1989. Вып. 1. С. 28-36.

	D _{0.0001} Т _{0.9999} 0,011 г/см ³	СD 4 мк) M	CI	H		СН		
	R	0,928	0,93	2	0,93	34		1,137	MM
nn	# опыта/ L ₀ в расчете	N _{dt} 10 ¹³	N _t 10 ¹	t 3	Т _{i,d} кэІ	lt 3	ρ _{max} г/см ³	M _{clean} %	<i>L</i> _{1/e} μm
6	# 121125	2,5	2,2		2,1		41	-	2,1
7	# 130510	2,4	1,9		2,2		53	-	2,1
8	автомод.	2,5	10		-		44	40	2,0
9	$L_0=2 \mu m$	2,8	8,6		-		52	31	2,4

Здесь: Ndt и Ntt – выходы ДТ- и ТТ- нейтронов;

T_{i,dt}-экспериментальная температура ионов при сжатии газа;

ρ_{max} - экспериментальное и расчетная плотности сжатого газа;

Mclean (%) – масса газа, свободная от СН (по уровню концентрации 95%);

L1/е (µm) –перемешанная толщина оболочки по уровню концентрации 1/е.

Расчетный выход ДТ-нейтронов совпадает с экспериментальным и в ~ 6 раз выше фоновых значений.

*) Неуважаев В.Е., Яковлев В.Г. Расчет гравитационного турбулентного перемешивания по кɛ-модели// ВАНТ. Сер. Мат. моделирование физических процессов. 1989. Вып. 1. С. 28-36.

	D _{0.0001} Т _{0.9999} 0,011 г/см ³	СН 2 мкм	СD 4 мк	М	СН		
	R (),928	0,930	0,934		1,13′	7 мм
nn	# опыта/ L ₀ в расчете	N _{dt} 10 ¹³	N _{tt} 10 ¹³	Т _{i,dt} кэВ	ρ _{max} г/см ³	M _{clean} %	<i>L</i> _{1/e} μm
13	# 130315	0,88	2,3	2,2	59	-	2,1
14	# 130512	1,3	3,4	2,6	43	I	2,1
15	автомод.	0,23	10	-	44	40	1,9
16	$L_0=2 \mu m$	1,3	8,5	-	52	34	2,4

Здесь: Ndt и Ntt – выходы ДТ- и ТТ- нейтронов; Т_{i,dt}–экспериментальная и расчетная температура ионов при сжатии газа;

 ρ_{max} - экспериментальное и расчетная плотности сжатого газа; Mclean (%) – масса газа, свободная от CH (по уровню концентрации 95%); $L_{1/e}$ (µm) –перемешанная толщина оболочки по уровню концентрации 1/е. Расчетный выход ДТ-нейтронов совпадает с экспериментальным при начальной шероховатости $L_0=2$ мкм.

*) Неуважаев В.Е., Яковлев В.Г. Расчет гравитационного турбулентного перемешивания по кɛ-модели// ВАНТ. Сер. Мат. моделирование физических процессов. 1989. Вып. 1. С. 28-36.

	D _{0.0001} Т _{0.9999} 0,011 г/см ³	СН 1 мкм	СD 5 мкм	1	СН		
	R 0.	,928 0,9	929	0,934		1,13	87 мм
nn	# опыта/ L ₀ в расчете	N _{dt} 10 ¹³	N _{tt} 10 ¹³	Т _{i,dt} кэВ	ρ _{max} г/см ³	M _{clean} %	<i>L</i> _{1/e} μm
10	# 130317	2,0	2,7	2,1	43	-	2,1
11	автомод.	0,30	10	-	44	41	1,6
12	L ₀ =2 μm	2,0	9,0	-	51	32	2,2

Здесь: Ndt и Ntt – выходы ДТ- и ТТ- нейтронов;

 $T_{i,dt}$ -экспериментальная температура ионов при сжатии газа; ρ_{max} - экспериментальное и расчетная плотности сжатого газа; M_{clean} (%) – масса газа, свободная от СН (по уровню концентрации 95%); $L_{1/e}$ (µm) –перемешанная толщина оболочки по уровню концентрации 1/е. Расчетный выход ДТ-нейтронов совпадает с экспериментальным при начальной шероховатости $L_0=2$ мкм.

^{*)} Неуважаев В.Е., Яковлев В.Г. Расчет гравитационного турбулентного перемешивания по кє-модели// ВАНТ. Сер. Мат. моделирование физических процессов. 1989. Вып. 1. С. 28-36.

	D _{0.0001} Т _{0.9999} 0,011 г/см ³	СН 4 мк	м 4	CD мкм	СН		
	R	0,928	0,932	0,936		1,13	87 мм
nn	# опыта/ L ₀ в расчете	N _{dt} 10 ¹³	N _{tt} 10 ¹³	Т _{i,dt} кэВ	ρ _{max} Γ/cm ³	M _{clean} %	L _{1/e} μm
17	# 130612	0,72	2,3	2,9	35	-	2,1
18	# 130614	0,67	2,4	3,4	33	-	2,1
19	автомод.	0,22	10	-	45	40	2,1
20	L ₀ =2 μm	0,62	8,5	-	53	27	2,5

Здесь: Ndt и Ntt – выходы ДТ- и ТТ- нейтронов; Т_{i,dt} –экспериментальная и расчетная температура ионов при сжатии газа;

 ρ_{max} - экспериментальное и расчетная плотности сжатого газа; Mclean (%) – масса газа, свободная от CH (по уровню концентрации 95%); $L_{1/e}$ (µm) –перемешанная толщина оболочки по уровню концентрации 1/е. Расчетный выход ДТ-нейтронов совпадает с экспериментальным при начальной шероховатости $L_0=2$ мкм.

*) Неуважаев В.Е., Яковлев В.Г. Расчет гравитационного турбулентного перемешивания по кє-модели// ВАНТ. Сер. Мат. моделирование физических процессов. 1989. Вып. 1. С. 28-36.

Слева- Профиль ионной температуры на момент t≈22,2 нс - максимума т.я. реакций Справа- Профиль плотности на момент t≈22,2 нс - максимума DT- и TT-реакций

Генерация более 70% нейтронов ТТ-реакции в 1D-расчете происходит в центральной области при T_i>4 кэВ, имеющей массу ~ 20% от массы газа.

*) Неуважаев В.Е., Яковлев В.Г. Расчет гравитационного турбулентного перемешивания по кє-модели// ВАНТ. Сер. Мат. моделирование физических процессов. 1989. Вып. 1. С. 28-36.

Зависимость от времени ускорения на границе газа с оболочкой (слева) Зависимость от времени зон и ширин перемешивания на границах слоя CD в расчете с *L*₀=2мкм (справа)

*) Неуважаев В.Е., Яковлев В.Г. Расчет гравитационного турбулентного перемешивания по кɛ-модели// ВАНТ. Сер. Мат. моделирование физических процессов. 1989. Вып. 1. С. 28-36.

Слева: Профили концентрации трития (С1), запирающего слоя СН(С2) и слоя СD (С3) на момент t≈22,2 нс - максимума DT-реакции. Справа: Профили турбулентной кинетической энергии *k* и скорости затухания кинетической энергии *ε* на момент t≈22,2 нс - максимума DT- и TT-реакций.

) Неуважаев В.Е., Яковлев В.Г. Расчет гравитационного турбулентного перемешивания по кɛ-модели// ВАНТ. Сер. Мат. моделирование физических процессов. 1989. Вып. 1. С. 28-36. Согласно работе [] размеры частиц, для которых существенны процессы диффузии ионов в плазме можно оценить по формуле:

$$r_*(\mu m) \leq \sqrt{D\Delta t_*} \approx \sqrt{\frac{A_2 T_i^{5/2} \Delta t_*}{z_1^2 z_2^2 \rho_2^* \sqrt{A_1}}}$$

где: Δt_* - время (нс); T_i - температура ионов (кэВ); Z_1 , A_1 – заряд, масса ядра легкой компоненты; Z_2 , A_2 и ρ_2^* – заряд, масса ядра и плотность тяжелой компоненты; $\Delta t_* \approx R_*/C_{_{3B}}$, R_* -характерный размер сжатого газа, $C_{_{3B}}$ - скорость звука.

Для $T_i \approx 1-2$ кэВ, $\rho_2 \approx 50$ г/см³ и R*~ 60 мкм: $r_* \approx 0,3$ мкм - характерный размер частиц пластика, которые успеют обменяться тяжелыми изотопами водорода с окружающим газом за время.

Масса слоя CD толщиной ∆r≈0,3 мкм, окружающего газ с R_{*}~ 60 мкм, составляет ~ 500 нг, что к близко к данным опыта – массе CD ~ 820 нг, которая атомарно смешалась с тритием и вступила в ДТ-реакцию при T_i ~ 2 кэВ.

Вывод: необходим учет диффузии ионов в плазме при моделировании опытов, проведенных на NIF по атомарному перемешиванию в мишенях ИТС.

*) Г.Н. Рыкованов. Диффузионное расплывание частиц в зоне турбулентного смешивания. ВАНТ, серия: теоретическая и прикладная физика, вып.1, 50-52 (1987).

Для турбулентного числа Рейнольдса можно написать оценку: $Re^* \approx L^*(dL^*/dt)/v_i$, где: $L^*(t)$ - зависимость ширины зоны перемешивания от времени, v_i - ионная кинематическая вязкость.

Оценка коэффициент кинематической вязкости для DT дает:

$$v_i$$
 (c m²/c) $\approx 10 T_i^{5/2}/
ho$.

Для рассматриваемых задач вблизи момента максимального сжатия мишени: $L^* \sim 2 \cdot 10^{-3}$ см, $dL^*/dt \approx 5 \cdot 10^6$ см/с, что при $T_i \sim 1$ кэВ и $\rho \sim 20$ г/см³ дают оценку турбулентных чисел Рейнольдса $Re^* \sim 2 \cdot 10^4$.

Числа Рейнольдса Re* ~2·10⁴ позволяют говорить о возможности достижения турбулентной стадии развития неустойчивости Релея-Тейлора при сжатии газонаполненных оболочек на установке NIF*).

Комплекс двумерных программ ТИГР-ОМЕГА-3Т¹:

- двумерная трехтемпературная газовая динамика;
- уравнения кинетики термоядерных реакций;
- генерация и перенос альфа частиц и нейтронов;
- метод концентраций для течений с большими деформациями²⁾
- Е.Н. Аврорин и др, Обзор теоретических работ по ИТС, проведенных в РФЯЦ-ВНИИТФ. В сб. Вопросы современной технической физики. Избранные труды РФЯЦ - ВНИИТФ. стр. 252-276. (РФЯЦ-ВНИИТФ, Снежинск, 2002).
- 2. А.Н. Шушлебин и др. Расчеты с учетом больших деформаций термоядерных мишеней непрямого облучения для лазерной установки ИСКРА-6, Доклад на «IX Забабахинские научные чтения», Снежинск, Россия, 2007

Расчеты влияния асимметрии облучения на сжатие оболочек, заполненных D_{0.75}T_{0.25} -газом

 $T_f(t, \theta) = T_{f, \text{гран.}}(t) (1 + 0, 25 \cdot \gamma_4 P_4(x)) \gamma_4 = -1,5\%$ -асимметрия в потоке излучения

*) S.V. Weber, et al, Simulations of indirectly driven gas-filled capsules at the National Ignition Facility, Physics of Plasmas 21, 112706 (2014)

2D- расчеты по ТИГР-ОМЕГА-3Т сжатия мишени при асимметрии в потоке излучения _{γ4}= - 1,5%

N⁰	опыт/	N _{dt}	N _{dd}	T _{i,dt}	tγ	примечания
	расчет	10 ¹⁵	10 ¹³	кэВ	(нс)	
1	Опыт ^{*)} N120923	0,67	0,75	3,1	22,4	-
2	1D-ТИГР-3Т	5,0	5,5	3,0	22,4	a ₄ =0.
3	2D-ТИГР -3Т	4,4	4,8	3,0	22,4	a ₄ =1,5%

Здесь: N_{dt} и N_{dd} – выходы нейтронов ДТ- и ДД- реакций; T_{i,dt} –экспериментальные и расчетные температуры ионов, t_γ – время срабатывания мишени по вспышке гамма-квантов

Нейтронный выход в расчете ТИГР-ОМЕГА-3Т, выполненном при асимметрии в потоке излучения a₄=-1,5%, всего лишь на 15% ниже, чем в 1D-расчете и в ~7 раз выше экспериментального значения.

^{*)} S.V. Weber, et al, Simulations of indirectly driven gas-filled capsules at the National Ignition Facility, Physics of Plasmas 21, 112706 (2014)

Конфигурация сжатой мишени в 2D-расчете по ТИГР-3Т не противоречат экспериментальным нейтронным и рентгеновским изображениям

Нейтронное (слева) и рентгеновское (справа) изображение в опыте N120923*)

Температура ионов (слева) и плотность (справа) на момент максимума скорости ДТ-реакции в расчете с асимметрией в потоке излучения 2a₄=3%

*) S.V. Weber, et al, Simulations of indirectly driven gas-filled capsules at the National Ignition Facility, Physics of Plasmas 21, 112706 (2014)

Результаты опыта с СН-оболочкой, заполненной D_{0,75}T_{0,25} -газом, и 1D-расчетов по программе ЭРА

№	Опыт / Расчет	N _{dt} 10 ¹⁵	N _{dd} 10 ¹³	Т _{i,dt} кэВ	Т _і (0) кэВ	t _γ (нс)	M _{clean} (%)	L _{mix} (µm)	Примечания
1	Опыт ¹⁾ N120923	0,67	0,75	3,06	-	22,45	-	~ 2	-
2	1D-ERA_D _{0,75} T _{0,25}	1,9	2,5	2,4	3,9	22,37	-	-	Спектральный перенос излучения ^{*)}
3	1D- ЭРА_D _{0,75} T _{0,25}	1,6	2,0	2,3	3,8	22,37	~20	~3	Спектр. пер. излучения ^{*)} к є-модель с <i>L</i> ₀ =2 мкм
4	1D-ЭРА D _{0,69} T _{0,23} C _{0,04} H _{0,04}	0,55	0,78	1,8	3,3	22,37	-	-	Спектральный перенос излучения ^{*)}

Здесь: N_{dt} и N_{dd} – выходы ДТ- и ДД- нейтронов; Т_{i,dt} –экспериментальные и расчетные ионные температуры (средние по ДТ-газу); Т_i(0) –ионные температуры в центре мишени; t_γ – время срабатывания мишени; M_{clean} (%) - доля массы ДТ, не перемешанного с оболочкой; L_{mix} – Лагранжева толщина слоя оболочки, перемешанного с ДТ к моменту максимального сжатия мишени.

*) В расчетах пробеги излучения, сосчитанные по программе RESEOS, были уменьшены в 2 раза, чтобы согласовать времена работы мишени.

Модель RESEOS : Ovechkin A.A., Loboda P.A., Novikov V.G. et al, HEDP, I (13), 20 – 33 (2014).

Расчетный нейтронный выход близок к экспериментальному, если масса CH, однородно намешанного в газ, составляет $\Delta M \sim 25\%$ от массы газа или $\Delta M \sim 7,1$ мкг.

Моделирование развития коротковолновых возмущений при сжатии газонаполненных оболочек по программе ТИГР-3Т

Измеренный (символы) и расчетный (кривая) рост возмущений оптической толщины ($\delta \int \rho dr$) оболочки от номера сферической гармоники (L) на момент 20,3 нс, когда оболочка имеет радиус 650 мкм при ее начальном внешнем радиусе ~ 1120 мкм (из работы [1]) Результаты 2D- моделирования по программе ТИГР-3Т

L	30	60	90
$\frac{\delta \int \rho dr}{\delta \int \rho_0 dr_0}$	40	650	1000

Для нескольких номеров гармоник (*L*) рассчитан рост вариации оптической толщины оболочки к моменту 20,3 нс, когда оболочка имеет радиус 650 мкм

Моделирование по ТИГР-3Т роста 60-ой гармоники возмущений наружной границы оболочки с начальной амплитудой $\delta_{60}=10$ нм.

Профили температуры ионов (слева) и плотности (справа) на момент максимальной скорости ДТ-реакций в газе ($t_{DT,max}$ =22,41 нс) в расчете ТИГР-3Т для 60-ой гармоники возмущения оболочки с начальной амплитудой $\delta_{60} = 10$ нм. Размеры по осям–в [см].

Начальные возмущения выросли в ~5·10³ раз. Однако, потери в сжатии газа и ионной температуре незначительны.

Моделирование по ТИГР-3Т роста 60-ой гармоники возмущений наружной границы оболочки с начальной амплитудой $\delta_{60} = 10$ нм.

Конфигурации первых 4-х областей мишени на три момента времени: t _{<DT>max} =22,40нс - момент максимальной скорости ДТ-реакций в газе (слева); t_{p,max}=22,61- момент максимального сжатия газа (в центре; показана сетка); t_{fin}=23,26 нс - момент окончания счета (справа). Размеры по осям – в см.

Центральная, горячая область топлива не засорена материалом оболочки, поэтому снижения в выходе ДТ-нейтронов по сравнению с 1D- расчетами практически не было. Экспериментальный нейтронный выход в ~ 3 раза ниже, чем в 1D-расчете с учетом спектрального переноса излучения при величине схождения по радиусу ~15.

Влияние различных факторов на нейтронный выход согласно расчетам ЛЛНЛ (HYDRA code) для опытов, проведенных на NIF с газонаполненными оболочками

Диаграмма из работы [1], которая иллюстрирует влияние различных факторов на расчетное снижение нейтронного выхода в опытах, проведенных на установке NIF с газонаполненными оболочками

Согласно расчетам ЛЛНЛ существует масса причин, которые приводят к снижению нейтронного выхода в экспериментах, проведенных на установке NIF с газонаполненными оболочками.

^{1.} S.V. Weber, et al, Simulations of indirectly driven gas-filled capsules at the National Ignition Facility, Physics of Plasmas 21, 112706 (2014)

- 1. 1D-расчеты с кє-моделью турбулентного перемешивания хорошо описывают экспериментальную зависимость выхода ДТ- нейтронов от толщины «запирающего» слоя, полученную в опытах на установке NIF по изучению атомарного перемешивания. Однако, необходимо уточнение интерпретации этих опытов с учетом диффузии ионов вблизи границы газа и оболочки.
- 2. В 2D расчетах по программе ТИГР-ОМЕГА-3Т с асимметрией в потоке излучения в виде 4-ой гармоники и полной амплитудой 3%, получены параметры и конфигурация сжатого газа, близкие к экспериментальным.
- 3. Расчеты по программе ТИГР-3Т дают близкий к экспериментальным данным рост амплитуды возмущений на фронте абляции в ~10³ раз для номеров гармоник *l*~60-90 на момент схождение оболочки по радиусу ~ 2 раз.
- 4. Можно согласится с авторами опубликованных работ что, к засорению газа и снижению нейтронного выхода в экспериментах на установке NIF приводит рост длинноволновых возмущений за счет системы подвеса мишени и капилляра, а также дефектов на поверхности оболочек.

СПАСИБО ЗА ВНИМАНИЕ