

РФЯЦ-ВНИИТФ им. академика Е.И.Забабахина

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ГИДРОДИНАМИЧЕСКИХ НЕУСТОЙЧИВОСТЕЙ И ПЕРЕМЕШИВАНИЯ ПРИ СЖАТИИ ГАЗОНАПОЛНЕННЫХ ОБОЛОЧЕК В ОПЫТАХ, ПРОВЕДЕННЫХ НА УСТАНОВКЕ NIF

В.А.Лыков, Е.С.Бакуркина, Н.Г.Карлыханов, Г.Н.Рыкованов, Л.В.Соколов, В.Е.Черняков, А.Н.Шушлебин

Международная конференция XIII Забабахинские научные чтения

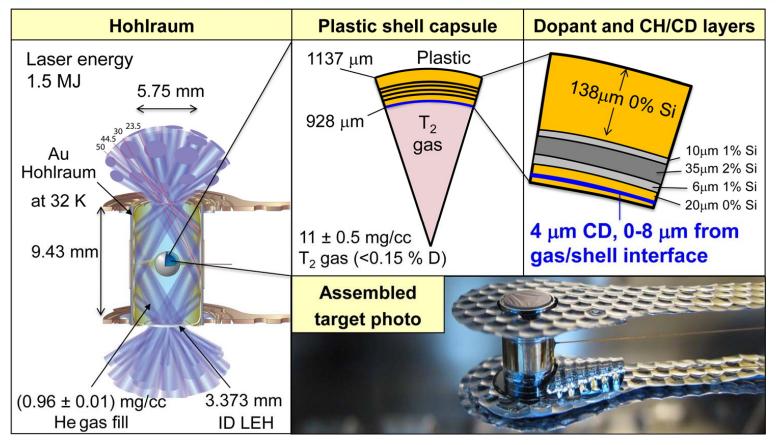
Снежинск, 21 марта 2017

Содержание доклада

ВВЕДЕНИЕ

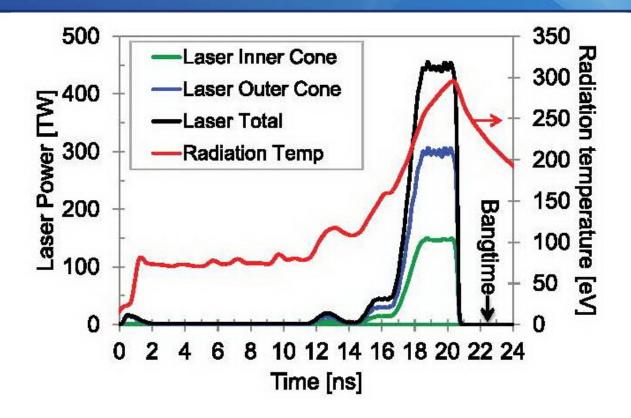
- 1. Результаты экспериментов, проведенных на установке NIF с целью изучения атомарного перемешивания в мишенях ИТС.
- 2. 1D -моделирование перемешивания в экспериментах с оболочками по ke-модели турбулентного перемешивания.
- 3. 2D моделирование по программе ТИГР-ОМЕГА-3Т влияния асимметрии облучения на сжатие газонаполненных оболочек.
- 4. Моделирование развития коротковолновых возмущений при сжатии газонаполненных оболочек по программе ТИГР-3Т.

выводы

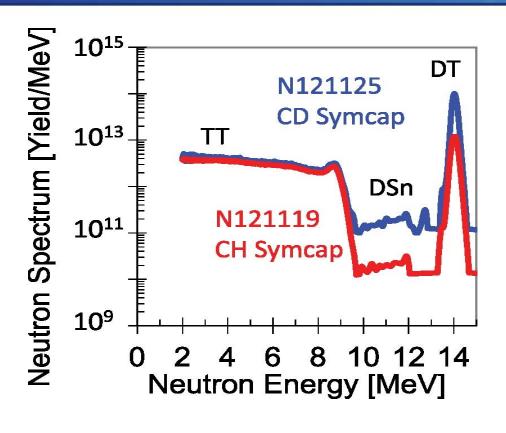

ВВЕДЕНИЕ

Развитие гидродинамических неустойчивостей и турбулентного перемешивания в мишенях ИТС являются основным препятствием на пути достижения условий термоядерного зажигания на мощных лазерных установках. Поэтому их экспериментальному и расчетно-теоретическому изучению уделяется большое внимание.

Эксперименты, проведенные на установке NIF с целью изучения атомарного перемешивания в мишенях ИТС.

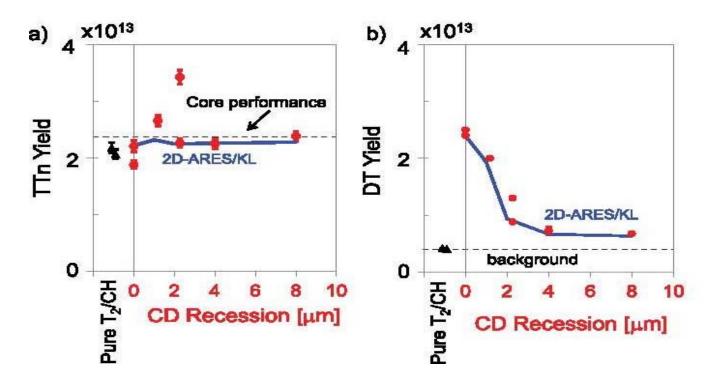


Цилиндрический хольраум из золота (слева). В центре хольраума размещена мишень, конструкция которой показана справа. Справа внизу – фотография сборки, которая использовалась в опыте N121119 на установке NIF*)


Мощность лазерного излучения NIF и температура излучения в хольрауме

Полная мощность лазерной энергии от времени в опыте N130512 при пиковом значении 436 ТВт -черная линия. Мощность лазерного излучения во внутреннем и внешнем конусе лазерных пучков - зеленая и синяя линии. Зависимость температуры излучения хольраума от времени — красная линия

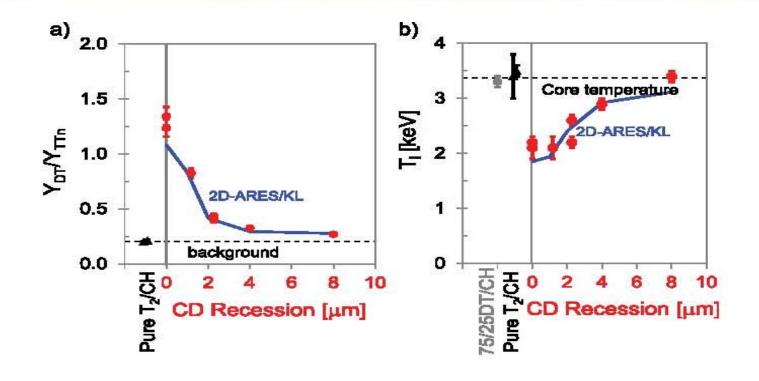
Спектры нейтронов в опытах на лазере NIF с оболочками, заполненными T_2 -газом


$$D + T \rightarrow n(14.1 MeV) + {}_{2}^{4} He$$
 $T + T \rightarrow 2n(0 \div 9.4 MeV) + {}_{2}^{4} He$
 $Y_{DT} \approx n_{D} n_{T} < \sigma v >_{DT} V_{mix} t_{mix} + Y_{DT-\phi o H}$
 $<\sigma v>_{DT}$ — скорость ДТ-реакции пр., пт — концентрации D и T V_{mix} объем смеси t_{mix} - время протекания реакции $Y_{DT-\phi o H}$ фон ДТ-нейтронов от

примеси D в T₂-газе (<0.15%)

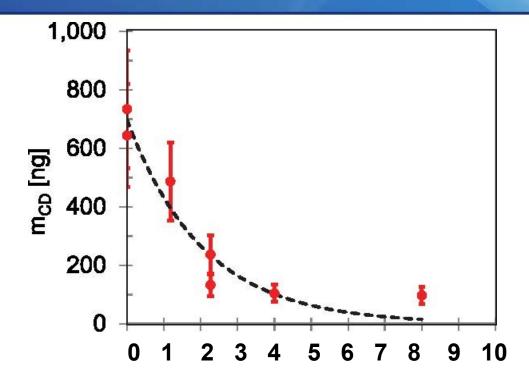
Нейтронные спектры^{*)}, зарегистрированные в контрольном опыте без CD-слоя (№121119) и в опыте с CD-слоем на границе с T-газом (№121125).

Выходы ТТ- и ДТ- нейтронов в опытах на NIF рфяц-вниитф с оболочками, заполненными Т₂-газом.



- Выход ТТ-нейтронов для СН-оболочек, заполненных тритием (черные метки) и в опытах с CD-слоем, который был размещен на разной глубине CH-оболочки (красные метки). Синяя линия - 2D-расчеты по программе ARES.
- Выход ДТ-нейтронов для контрольных экспериментов (без СD-слоя) и опытов с **CD-слоем.** Синяя линия - 2D-расчеты по программе ARES.

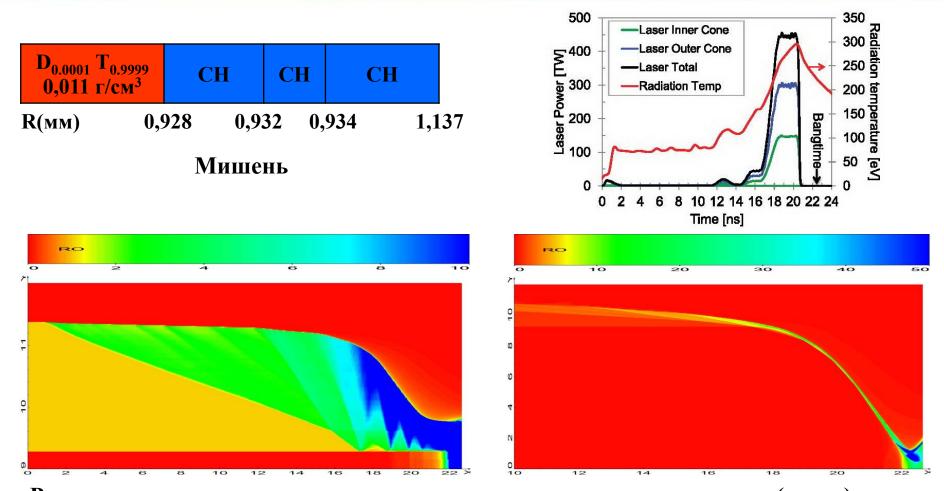
Выходов ДТ-нейтронов и температура ионов в опытах на лазере NIF с оболочками, заполненными T₂-газом.



- а) Отношение выходов ДТ- и ТТ- нейтронов при разной глубине размещения слоя CD толщиной 4 мкм в оболочке из CH.
- b) Температура ионов, определенная по Допплеровскому уширению ДТнейтронов. Синяя линия - 2D-расчеты по программе ARES

Определение массы CD, атомарно смешанной с тритием и вступившей в ДТ- реакцию при температуре 2 кэВ

Масса атомарно перемешанного с тритием слоя CD, вступившего в ДТ-реакцию, в зависимости от места его размещения в CH -оболочке. Черная пунктирная кривая отвечает полной массе CD, вступившей в ДТ-реакции, m_{CD} 820 нг с масштабом перемешивания L_{mix} 2,1 мкм


Компьютерные программы РФЯЦ- ВНИИТФ для моделирования ИТС - мишеней

Название	ЭРА	ТИГР-ОМЕГА
Число измерений	1D	2D
2-температурная модель для электронов и ионов	+	+
Перенос излучения	Спектральный кинетический	Эффективная температура
Теплопроводность	e, i	e, i
Турбулентное перемешивания	+	+
Термоядерные реакции и перенос их продуктов	+	+
Модель поглощения лазерного излучения	+	+/-
Генерация и перенос быстрых электронов	+	-

Уравнения состояния и пробеги излучения - из библиотеки РФЯЦ-ВНИИТФ

Распределение плотности в зависимости от времени в лагранжевых (слева) и эйлеровых координата (справа) в 1D-расчете газонаполненной оболочки

^{*)} Неуважаев В.Е., Яковлев В.Г. Расчет гравитационного турбулентного перемешивания по kε-модели// ВАНТ. Сер. Мат. моделирование физических процессов. 1989. Вып. 1. С. 28-36.

1D -моделирование турбулентного перемешивания в контрольных экспериментах по $k\varepsilon$ -модели *)

	$\begin{array}{c} \mathbf{D_{0.0001} \ T_{0.9999}} \\ \mathbf{0,011 \ r/cm^3} \end{array}$	СН	СН	СН	
R	0,92	28 0,93	32 0,9	034	1,137 мм

nn	$\#$ опыта/ $L_{ heta}$ в расчете	N _{dt} 10 ¹³	N _{tt} 10 ¹³	Т _{i,dt} кэВ	ρ _{max} Γ/cм ³	M _{clean}	$L_{1/e}$ μm
1	# 120904	0,41	2,2	3,4	50	-	2,1
2	# 121119	0,40	2,1	3,5	41	-	2,1
3	без тіх	0,25	11	3,3	35	100	-
4	автомод.	0,22	10	3,2	44	41	1,9
5	L ₀ =2 μm	0,19	8,5	3,0	52	31	2,3

Здесь: Ndt и Ntt – выходы ДТ- и ТТ- нейтронов;

 $T_{i,dt}$ –экспериментальная и расчетная температура ионов при сжатии газа;

 ho_{max} - экспериментальное и расчетная плотности сжатого газа;

М_{сlean} (%) – масса газа, свободная от СН (по уровню концентрации 95%);

 $L_{1/e}$ (µm) –перемешанная толщина оболочки по уровню концентрации 1/е.

В расчете начальная концентрация D занижена в ~ 6 раз.

Расчетный выход нейтронов слабо зависит от перемешивания и ~5 раз выше экспериментального

^{*)} Неуважаев В.Е., Яковлев В.Г. Расчет гравитационного турбулентного перемешивания по kε-модели// BAHT. Сер. Мат. моделирование физических процессов. 1989. Вып. 1. С. 28-36.

	D _{0.0001} T _{0.9999} 0,011 г/см ³	СD 4 мкм	СН	СН	
R	0	,928 0,9	32 0,9	034	1,137 мм

nn	# опыта/ L ₀ в расчете	N _{dt} 10 ¹³	N _{tt} 10 ¹³	Т _{i,dt} кэВ	ρ _{max} Γ/cm ³	M _{clean}	<i>L</i> _{1/e} μm
6	# 121125	2,5	2,2	2,1	41	-	2,1
7	# 130510	2,4	1,9	2,2	53	-	2,1
8	автомод.	2,5	10	-	44	40	2,0
9	$L_0=2 \mu m$	2,8	8,6	_	52	31	2,4

Здесь: Ndt и Ntt – выходы ДТ- и ТТ- нейтронов;

T_{i,dt}-экспериментальная температура ионов при сжатии газа;

 ho_{max} - экспериментальное и расчетная плотности сжатого газа;

Мсlean (%) – масса газа, свободная от СН (по уровню концентрации 95%);

 $L_{1/e}$ (μ m) –перемешанная толщина оболочки по уровню концентрации 1/е .

Расчетный выход ДТ-нейтронов совпадает с экспериментальным и в ~ 6 раз выше фоновых значений.

^{*)} Неуважаев В.Е., Яковлев В.Г. Расчет гравитационного турбулентного перемешивания по kε-модели// ВАНТ. Сер. Мат. моделирование физических процессов. 1989. Вып. 1. С. 28-36.

	$\begin{array}{c} \mathbf{D_{0.0001} \ T_{0.9999}} \\ \mathbf{0,011 \ r/cm^3} \end{array}$	СН 2 мкм	СD 4 мкм	СН	
R	0,	928 0,9	930 0,	934	1,137 мм

nn	# опыта/ L ₀ в расчете	N _{dt} 10 ¹³	N _{tt} 10 ¹³	Т _{i,dt} кэВ	ρ _{max} Γ/cm ³	M _{clean}	<i>L</i> _{1/e} μm
13	# 130315	0,88	2,3	2,2	59	_	2,1
14	# 130512	1,3	3,4	2,6	43	-	2,1
15	автомод.	0,23	10	_	44	40	1,9
16	$L_0=2 \mu m$	1,3	8,5	_	52	34	2,4

Здесь: N_{dt} и N_{tt} — выходы ДТ- и ТТ- нейтронов; $T_{i,dt}$ —экспериментальная и расчетная температура ионов при сжатии газа;

 $ho_{
m max}$ - экспериментальное и расчетная плотности сжатого газа; $m M_{clean}$ (%) — масса газа, свободная от СН (по уровню концентрации 95%); $m \it L_{1/e}$ ($m \mu m$) —перемешанная толщина оболочки по уровню концентрации 1/е . Расчетный выход ДТ-нейтронов совпадает с экспериментальным при начальной шероховатости $m \it L_0$ =2 мкм.

^{*)} Неуважаев В.Е., Яковлев В.Г. Расчет гравитационного турбулентного перемешивания по kε-модели// BAHT. Сер. Мат. моделирование физических процессов. 1989. Вып. 1. С. 28-36.

	$D_{0.0001} T_{0.9999} \ 0,011 \ \text{г/cm}^3$	СН 1 мкм	СD 5 мкм	СН	
$\overline{\mathbf{R}}$	0,9	928 0,9	929 0,9	934	1,137 мм

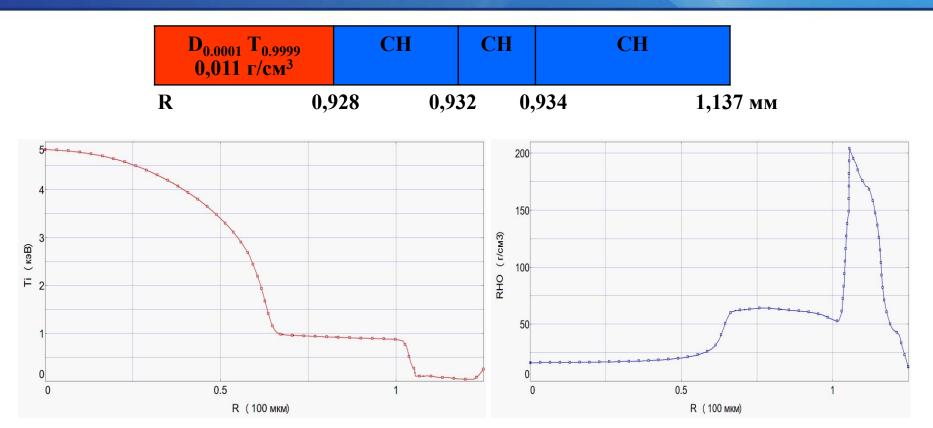
nn	# опыта/ L ₀ в расчете	N _{dt} 10 ¹³	N _{tt} 10 ¹³	Т _{i,dt} кэВ	ρ _{max} Γ/cm ³	M _{clean}	$L_{1/e} \mu m$
10	# 130317	2,0	2,7	2,1	43	-	2,1
11	автомод.	0,30	10	_	44	41	1,6
12	$L_0=2 \mu m$	2,0	9,0	-	51	32	2,2

Здесь: N_{dt} и N_{tt} – выходы ДТ- и ТТ- нейтронов; $T_{i,dt}$ –экспериментальная температура ионов при сжатии газа; ρ_{max} - экспериментальное и расчетная плотности сжатого газа; M_{clean} (%) – масса газа, свободная от СН (по уровню концентрации 95%); $L_{1/e}$ (µm) –перемешанная толщина оболочки по уровню концентрации 1/e . Расчетный выход ДТ-нейтронов совпадает с экспериментальным при

начальной шероховатости L_0 =2 мкм.

^{*)} Неуважаев В.Е., Яковлев В.Г. Расчет гравитационного турбулентного перемешивания по kε-модели// ВАНТ. Сер. Мат. моделирование физических процессов. 1989. Вып. 1. С. 28-36.

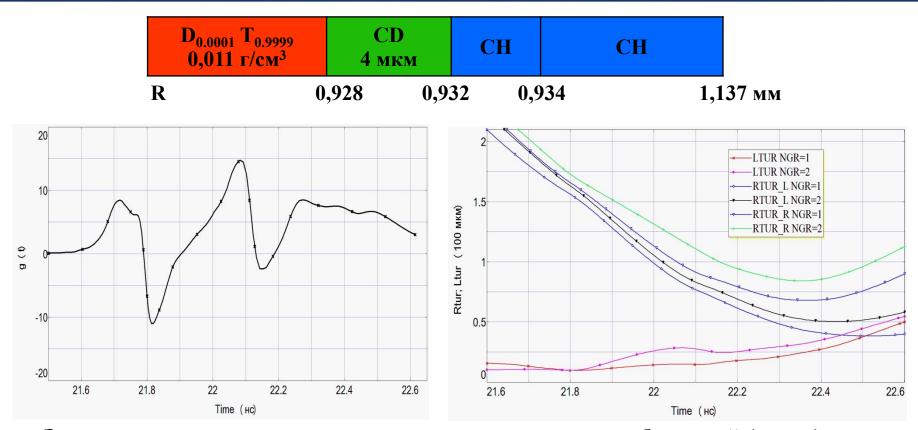
	D _{0.0001} T _{0.9999} 0,011 г/см ³	СН 4 мкм	СD 4 мкм	СН	
R	0,	928 0,9	0,93	36	


nn	# опыта/ L ₀ в расчете	N _{dt} 10 ¹³	N _{tt} 10 ¹³	Т _{i,dt} кэВ	ρ _{max} Γ/cm ³	M _{clean}	L _{1/e} µm
17	# 130612	0,72	2,3	2,9	35	_	2,1
18	# 130614	0,67	2,4	3,4	33	-	2,1
19	автомод.	0,22	10	-	45	40	2,1
20	$L_0=2 \mu m$	0,62	8,5	_	53	27	2,5

Здесь: N_{dt} и N_{tt} — выходы ДТ- и ТТ- нейтронов; $T_{i,dt}$ —экспериментальная и расчетная температура ионов при сжатии газа;

 $ho_{
m max}$ - экспериментальное и расчетная плотности сжатого газа; $m M_{clean}$ (%) — масса газа, свободная от СН (по уровню концентрации 95%); $m \it L_{1/e}$ ($m \mu m$) —перемешанная толщина оболочки по уровню концентрации 1/е . Расчетный выход ДТ-нейтронов совпадает с экспериментальным при начальной шероховатости $m \it L_0$ =2 мкм.

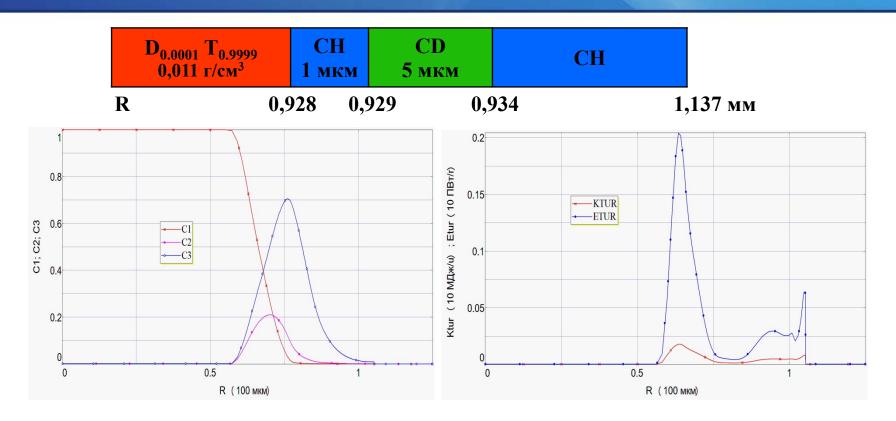
^{*)} Неуважаев В.Е., Яковлев В.Г. Расчет гравитационного турбулентного перемешивания по kε-модели// BAHT. Сер. Мат. моделирование физических процессов. 1989. Вып. 1. С. 28-36.



Слева- Профиль ионной температуры на момент t≈22,2 нс - максимума т.я. реакций Справа- Профиль плотности на момент t≈22,2 нс - максимума DT- и TT-реакций

Генерация более 70% нейтронов ТТ-реакции в 1D-расчете происходит в центральной области при T_i>4 кэВ, имеющей массу ~ 20% от массы газа.

^{*)} Неуважаев В.Е., Яковлев В.Г. Расчет гравитационного турбулентного перемешивания по kε-модели// ВАНТ. Сер. Мат. моделирование физических процессов. 1989. Вып. 1. С. 28-36.



Зависимость от времени ускорения на границе газа с оболочкой (слева) Зависимость от времени зон и ширин перемешивания на границах слоя CD в расчете с L_0 =2мкм (справа)

^{*)} Неуважаев В.Е., Яковлев В.Г. Расчет гравитационного турбулентного перемешивания по kε-модели// ВАНТ. Сер. Мат. моделирование физических процессов. 1989. Вып. 1. С. 28-36.

Слева: Профили концентрации трития (С1), запирающего слоя СН(С2) и слоя СD (С3) на момент t≈22,2 нс - максимума DT-реакции.

Справа: Профили турбулентной кинетической энергии k и скорости затухания кинетической энергии ε на момент t \approx 22,2 нс - максимума DT- и TT-реакций.

^{*)} Неуважаев В.Е., Яковлев В.Г. Расчет гравитационного турбулентного перемешивания по kε-модели// ВАНТ. Сер. Мат. моделирование физических процессов. 1989. Вып. 1. С. 28-36.

О необходимости учета диффузии ионов при сжатии рфяц-вниитф газонаполненных оболочек в опытах на лазере NIF.

Согласно работе [*] размеры частиц, для которых существенны процессы диффузии ионов в плазме можно оценить по формуле:

$$r_*(\mu m) \le \sqrt{D\Delta t_*} \approx \sqrt{\frac{A_2 T_i^{5/2} \Delta t_*}{Z_1^2 Z_2^2 \rho_2^* \sqrt{A_1}}}$$

где: Δt_* - время (нс); T_i - температура ионов (кэВ); Z_1 , A_1 – заряд, масса ядра легкой компоненты; \mathbf{Z}_2 , \mathbf{A}_2 и ${\rho_2}^*$ – заряд, масса ядра и плотность тяжелой компоненты; $\Delta t_* \approx R_*/\mathcal{C}_{\scriptscriptstyle \mathrm{3B}}$, R_* -характерный размер сжатого газа, C_{20} - скорость звука.

Для $T_i \approx 1-2$ кэВ, $\rho_2 \approx 50$ г/см³ и $R^* \sim 60$ мкм: $r_* \approx 0.3$ мкм - характерный размер частиц пластика, которые успеют обменяться тяжелыми изотопами водорода с окружающим газом за время.

Масса слоя CD толщиной Δr ≈0,3 мкм, окружающего газ с R_* ~ 60 мкм, составляет ~ 500 нг, что к близко к данным опыта – массе CD ~ 820 нг, которая атомарно смешалась с тритием и вступила в ДТ-реакцию при $T_i \sim 2$ кэВ.

Вывод: необходим учет диффузии ионов в плазме при моделировании опытов, проведенных на NIF по атомарному перемешиванию в мишенях ИТС.

^{*)} Г.Н .Рыкованов. Диффузионное расплывание частиц в зоне турбулентного смешивания. ВАНТ, серия: теоретическая и прикладная физика, вып.1, 50-52 (1987).

О турбулентных числах Рейнольдса при сжатии газонаполненных оболочек в опытах на установке NIF.

Для турбулентного числа Рейнольдса можно написать оценку: $Re^* \approx L^*(dL^*/dt)/v_i$, где: $L^*(t)$ - зависимость ширины зоны перемешивания от времени, v_i - ионная кинематическая вязкость.

Оценка коэффициент кинематической вязкости для DT дает:

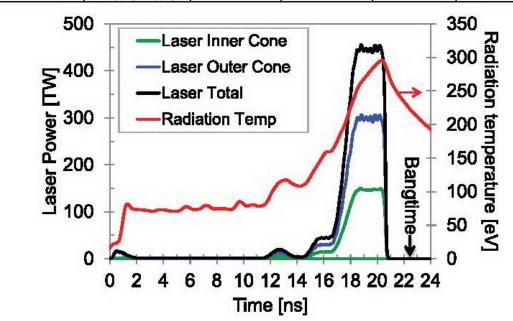
$$v_i(c M^2/c) \approx 10 T_i^{5/2}/\rho$$
.

Для рассматриваемых задач вблизи момента максимального сжатия мишени: $L^*\sim 2\cdot 10^{-3}$ см, $dL^*/dt\approx 5\cdot 10^6$ см/с, что при $T_i\sim 1$ кэВ и $\rho\sim 20$ г/см³ дают оценку турбулентных чисел Рейнольдса $Re^*\sim 2\cdot 10^4$.

Числа Рейнольдса Re* ~2·10⁴ позволяют говорить о возможности достижения турбулентной стадии развития неустойчивости Релея-Тейлора при сжатии газонаполненных оболочек на установке NIF*).

Моделирование экспериментов с газонаполненными оболочками по комплексу двумерных программ ТИГР-ОМЕГА-3Т.

Комплекс двумерных программ ТИГР-ОМЕГА-3Т1):


- двумерная трехтемпературная газовая динамика;
- уравнения кинетики термоядерных реакций;
- генерация и перенос альфа частиц и нейтронов;
- метод концентраций для течений с большими деформациями²⁾
- 1. Е.Н. Аврорин и др, Обзор теоретических работ по ИТС, проведенных в РФЯЦ-ВНИИТФ. В сб. Вопросы современной технической физики. Избранные труды РФЯЦ ВНИИТФ. стр. 252-276. (РФЯЦ-ВНИИТФ, Снежинск, 2002).
- 2. А.Н. Шушлебин и др. Расчеты с учетом больших деформаций термоядерных мишеней непрямого облучения для лазерной установки ИСКРА-6, Доклад на «IX Забабахинские научные чтения», Снежинск, Россия, 2007

Расчеты влияния асимметрии облучения на сжатие оболочек, заполненных $D_{0.75}T_{0.25}$ -газом

Мишень с $D_{0.75}T_{0.25}$ -газом *) в расчетах по программе ТИГР-ОМЕГА-3Т

№ обл	1	2	3	4	5	6	7	8
R (мм)	0.928	0.930	0.934	0.948	0.954	0.989	1.000	1.137
ρ	0,0084	1,05	1,05	1,05	1,10	1,15	1,10	1,05
состав	$D_{0.75}T_{0.25}$	СН	СН	СН	CHSi-1%	CHSi-2%	CHSi-1%	$C_{0.5}H_{0.5}$

$$q_e^* = 0.6n_e T_e \sqrt{T_e/m_e}$$

$$q_i^* = 0.5n_i T_i \sqrt{T_i/\langle A \rangle m_p}$$

$$q_f^* = c\sigma T_f^4/4$$

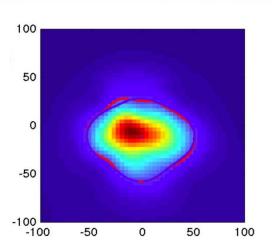
$$T_f(t, \theta) = T_{f, \text{гран.}}(t) (1 + 0, 25 \cdot \gamma_4 P_4(x))$$
 γ_4 = -1,5%-асимметрия в потоке излучения

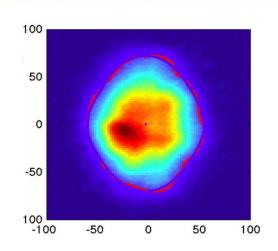
^{*)} S.V. Weber, et al, Simulations of indirectly driven gas-filled capsules at the National Ignition Facility, Physics of Plasmas 21, 112706 (2014)

2D- расчеты по ТИГР-ОМЕГА-3Т сжатия мишени при асимметрии в потоке излучения γ_4 = - 1,5%

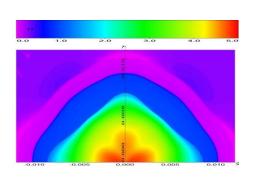
Результаты опыта N 120923 с мишенью, заполненной $D_{0,75}T_{0,25}$ -газом *) и результаты расчетов по программе ТИГР-3T .

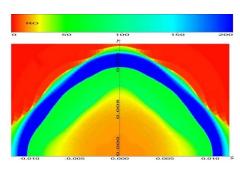
№	опыт/ расчет	N _{dt} 10 ¹⁵	N _{dd} 10 ¹³	Т _{i,dt} кэВ	t _γ (HC)	примечания
1	Опыт ^{*)} N120923	0,67	0,75	3,1	22,4	-
2	1D-ТИГР-3Т	5,0	5,5	3,0	22,4	a ₄ =0.
3	2 D-ТИГР - 3 T	4,4	4,8	3,0	22,4	a ₄ =1,5%


Здесь: N_{dt} и N_{dd} – выходы нейтронов ДТ- и ДД- реакций; $T_{i,dt}$ –экспериментальные и расчетные температуры ионов, t_{y} – время срабатывания мишени по вспышке гамма-квантов


Нейтронный выход в расчете ТИГР-ОМЕГА-3Т, выполненном при асимметрии в потоке излучения a_4 =-1,5%, всего лишь на 15% ниже, чем в 1D-расчете и в ~7 раз выше экспериментального значения.

^{*)} S.V. Weber, et al, Simulations of indirectly driven gas-filled capsules at the National Ignition Facility, Physics of Plasmas 21, 112706 (2014)


Конфигурация сжатой мишени в 2D- расчете по ТИГР-3Т не противоречат экспериментальным нейтронным и рентгеновским изображениям



Нейтронное (слева) и рентгеновское (справа) изображение в опыте N120923*)

Температура ионов (слева) и плотность (справа) на момент максимума скорости ДТ-реакции в расчете с асимметрией в потоке излучения $2a_4 = 3\%$

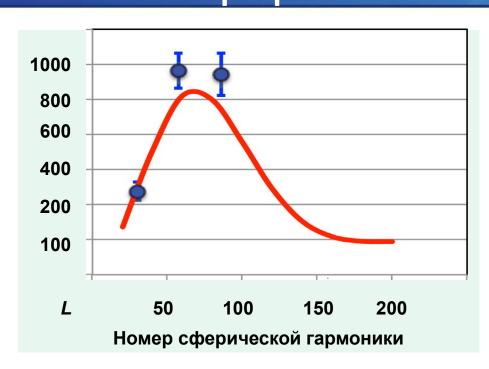
^{*)} S.V. Weber, et al, Simulations of indirectly driven gas-filled capsules at the National Ignition Facility, Physics of Plasmas 21, 112706 (2014)

Результаты опыта с СН-оболочкой, заполненной $D_{0.75}T_{0.25}$ -газом, и 1D-расчетов по программе ЭРА

№	Опыт / Расчет	N _{dt} 10 ¹⁵	N _{dd} 10 ¹³	Т _{i,dt} кэВ	Т _і (0) кэВ	t _γ (нс)	M _{clean} (%)	L _{mix} (μm)	Примечания
1	Опыт ¹⁾ N120923	0,67	0,75	3,06	-	22,45	-	~ 2	-
2	1D-ERA_D _{0,75} T _{0,25}	1,9	2,5	2,4	3,9	22,37	-	-	Спектральный перенос излучения ^{*)}
3	1D-ЭPA_D _{0,75} T _{0,25}	1,6	2,0	2,3	3,8	22,37	~20	~3	Спектр. пер. излучения $^{*)}$ k ϵ -модель с L_{θ} =2 мкм
4	$ \begin{array}{ c c c } \textbf{1D-} & \textbf{3PA} \\ \textbf{D}_{0,69} \textbf{T}_{0,23} \textbf{C}_{0,04} & \textbf{H}_{0,04} \end{array} $	0,55	0,78	1,8	3,3	22,37	-	-	Спектральный перенос излучения*)

Здесь: N_{dt} и N_{dd} – выходы ДТ- и ДД- нейтронов; $T_{i,dt}$ –экспериментальные и расчетные ионные температуры (средние по ДТ-газу); $T_i(0)$ –ионные температуры в центре мишени; t_{γ} – время срабатывания мишени; M_{clean} (%) - доля массы ДТ, не перемешанного с оболочкой; L_{mix} – Лагранжева толщина слоя оболочки, перемешанного с ДТ к моменту максимального сжатия мишени.

Модель RESEOS: Ovechkin A.A., Loboda P.A., Novikov V.G. et al, HEDP, I (13), 20 – 33 (2014).

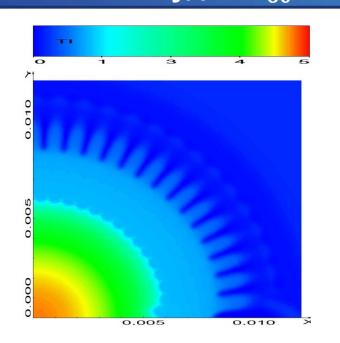

Расчетный нейтронный выход близок к экспериментальному, если масса СН, однородно намешанного в газ, составляет ∆М ~25% от массы газа или ∆М~7,1мкг.

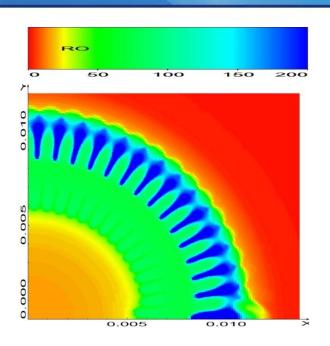
^{*)} В расчетах пробеги излучения, сосчитанные по программе RESEOS, были уменьшены в 2 раза, чтобы согласовать времена работы мишени.

^{*)} S.V. Weber, et al, Simulations of indirectly driven gas-filled capsules at the National Ignition Facility, Physics of Plasmas 21, 112706 (2014)

Моделирование развития коротковолновых возмущений при сжатии газонаполненных оболочек по программе ТИГР-3Т

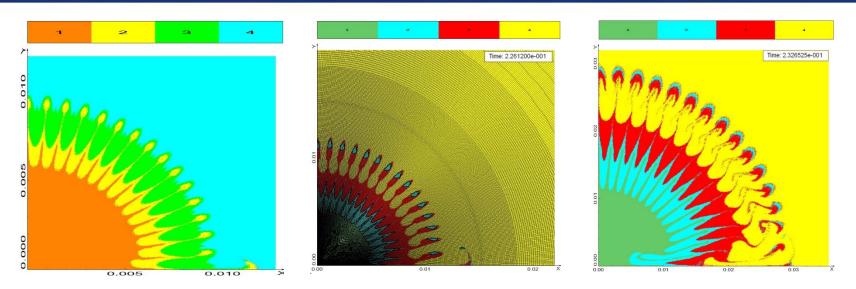
Измеренный (символы) и расчетный (кривая) рост возмущений оптической толщины $(\delta \int \rho dr)$ оболочки от номера сферической гармоники (L) на момент 20,3 нс, когда оболочка имеет радиус 650 мкм при ее начальном внешнем радиусе \sim 1120 мкм (из работы [1])


Результаты 2D- моделирования по программе ТИГР-3T


L	30	60	90
$\frac{\delta \int \rho dr}{\delta \int \rho_0 dr_0}$	40	650	1000

Для нескольких номеров гармоник (L) рассчитан рост вариации оптической толщины оболочки к моменту 20,3 нс, когда оболочка имеет радиус 650 мкм

Моделирование по ТИГР-3Т роста 60-ой гармоники возмущений наружной границы оболочки с начальной амплитудой $\delta_{60}=10$ нм.



Профили температуры ионов (слева) и плотности (справа) на момент максимальной скорости ДТ-реакций в газе ($t_{\rm DT,max}$ =22,41 нс) в расчете ТИГР-3Т для 60-ой гармоники возмущения оболочки с начальной амплитудой $\delta_{60}=10$ нм. Размеры по осям–в [см].

Начальные возмущения выросли в ~5·10³ раз. Однако, потери в сжатии газа и ионной температуре незначительны.

Моделирование по ТИГР-3Т роста 60-ой гармоники возмущений наружной границы оболочки с начальной амплитудой $\delta_{60}=10$ нм.

Конфигурации первых 4-х областей мишени на три момента времени: $t_{<DT>max}$ =22,40нс - момент максимальной скорости ДТ-реакций в газе (слева); $t_{\rho,max}$ =22,61- момент максимального сжатия газа (в центре; показана сетка); t_{fin} =23,26 нс - момент окончания счета (справа). Размеры по осям – в см.

Центральная, горячая область топлива не засорена материалом оболочки, поэтому снижения в выходе ДТ-нейтронов по сравнению с 1D- расчетами практически не было. Экспериментальный нейтронный выход в ~ 3 раза ниже, чем в 1D-расчете с учетом спектрального переноса излучения при величине схождения по радиусу ~15.

Влияние различных факторов на нейтронный выход согласно расчетам ЛЛНЛ (HYDRA code) для опытов, проведенных на NIF с газонаполненными оболочками

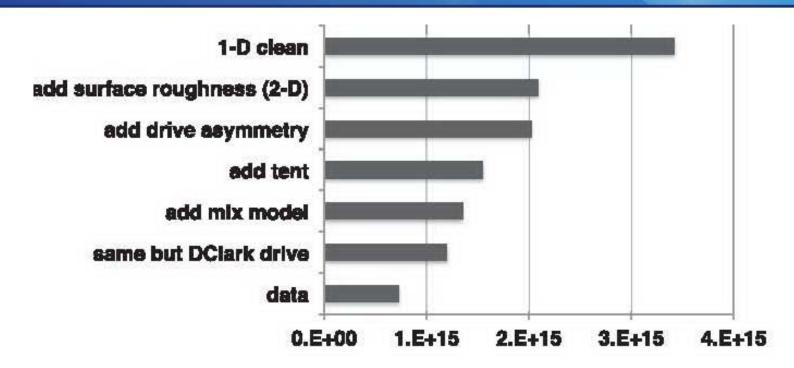


Диаграмма из работы [1], которая иллюстрирует влияние различных факторов на расчетное снижение нейтронного выхода в опытах, проведенных на установке NIF с газонаполненными оболочками

Согласно расчетам ЛЛНЛ существует масса причин, которые приводят к снижению нейтронного выхода в экспериментах, проведенных на установке NIF с газонаполненными оболочками.

1. S.V. Weber, et al, Simulations of indirectly driven gas-filled capsules at the National Ignition Facility, Physics of Plasmas 21, 112706 (2014)

РФЯЦ-ВНИИТФ

ВЫВОДЫ

- 1. 1D-расчеты с ка-моделью турбулентного перемешивания хорошо описывают экспериментальную зависимость выхода ДТ- нейтронов от толщины «запирающего» слоя, полученную в опытах на установке NIF по изучению атомарного перемешивания. Однако, необходимо уточнение интерпретации этих опытов с учетом диффузии ионов вблизи границы газа и оболочки.
- 2. В 2D расчетах по программе ТИГР-ОМЕГА-3Т с асимметрией в потоке излучения в виде 4-ой гармоники и полной амплитудой 3%, получены параметры и конфигурация сжатого газа, близкие к экспериментальным.
- 3. Расчеты по программе ТИГР-3Т дают близкий к экспериментальным данным рост амплитуды возмущений на фронте абляции в $\sim 10^3$ раз для номеров гармоник $l\sim 60$ -90 на момент схождение оболочки по радиусу ~ 2 раз.
- 4. Можно согласится с авторами опубликованных работ что, к засорению газа и снижению нейтронного выхода в экспериментах на установке NIF приводит рост длинноволновых возмущений за счет системы подвеса мишени и капилляра, а также дефектов на поверхности оболочек.

СПАСИБО ЗА ВНИМАНИЕ