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11. . CumulationCumulation
In 2017 we celebrate the centenary of

Evegeny Ivanovich Zababakhin.
In 2017 the problem of energy cumulation celebrates its 
centenary, too.
The study of energy cumulation started in 1917 when Rayleigh 
published his paper on the collapse of spherical bubbles.

Cumulation is most pronounced in convergent shocks and shells, and 
in bubble collapse.

The problem of bubble collapse in liquid came from cavitation 
corrosion of ship propellers.

A second breath to the problem was given by the development of 
nuclear weapons.

A third wave of interest to the problem raised in search for new
 sources of energy:

• hydrodynamic fusion
 

(shock wave)
• magnetic fusion
• laser fusion



2. 2. Energy cumulationEnergy cumulation
Cumulation is such a redistribution of energy in a 

thermodynamic system that makes it grow locally.
Energy cumulates if the ratio of the maximal specific internal energy 

mахE
 

to its average value Em

 

increases with time. Energy cumulation is 
characterized by a quantity 

If K→ ∞
 

with time t
 

, energy cumulation is unbounded. If K<N=const,
 energy cumulation is bounded. 

E.I. Zababakhin proposed that energy cumulation should be 
characterized by K in the form 

since P
 

has the dimensions of J/cm3

 

(energy per unit volume).
E.I. Zababakhin, Unbounded cumulation phenomena. Mechanics in the USSR over 50 
years. 
V. 2. Fluid mechanics. Moscow, NAUKA Publishers, 1970, P. 313-342. 

( )
( )m

maxE t
K .

E t
=

( )
( )0

maxP t
K

maxP t
=
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3. 3. Expectations and disappointmentsExpectations and disappointments
Unbounded energy cumulation was theoretically proved for many 

problems.
But it has not been achieved in experiment.
Only bounded energy cumulation is observed in experiment. 

E.I. Zababakhin: -
 

“Consideration to the maximum possible 
extent of actual conditions (including energy dissipation due to

 viscosity and heat conduction) does not eliminate theoretically 
unbounded cumulation, and the question of what after all bounds 
it remains undetermined". “Probably, cumulation is bounded by 
instability". (1988)
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44. . The history of cumulation studyThe history of cumulation study
Evgeny Zababakhin made a fundamental contribution to cumulation 

study.
Many authors drew brilliant theoretical results from cumulation 

modeling.
Analytical solutions for bubble collapse were derived by:

1917
 

–
 

Rayleigh (ideal incompressible liquid)
1960

 
–

 
Hunter (ideal gas)  

1963
 

–
 

Kazhdan and Brushlinsky (ideal gas)
1970

 
–

 
Zababakhin (viscous incompressible liquid)

1996 –
 

Krayko (ideal gas)

1965 –
 

Zababakhin solved spherical incompressible shell convergence.
1975 –

 
2017

 
Nigmatulin’s results for bubbles in real liquids

1960-2017
 

–
 

studies with numerical methods



55. . The history of cumulation in shock wavesThe history of cumulation in shock waves
Self-similar solutions to spherical shock convergence in ideal gas:

1942 –
 

Guderley,  1945 –
 

Sedov,  1945 –
 

Stanyukovich,  
1955 –

 
Landau, Stanyukovich,  1996-2014 –

 
Krayko

The effect of material properties on cumulation:
1957 –

 
Zababakhin, Nechayev

 
(shock waves in EM field)

1960 –
 

Zababakhin (energy cumulation in multi-layer spherical systems)
1965 –

 
Zababakhin, Simonenko

 
(heat conduction effects of shock 

parameters)

Our work aims to derive reference solutions which are used to verify 
accuracy of numerical methods for cumulation modeling. 
It differs from other types of work in problem statement, interpretation of 
results, approach to the construction and analysis of equations and 
methods for their solution.



Problem statement: at t = t0

 

,
-

 
a gas sphere of radius r0

 

and
 

mass
-

 
gas parameters:  P0

 

= 0,  ρ0

 

= const, U0 = 0,  E0 = 0,
- Ug0

 

< 0 on the boundary.
EOS:

 
P=f(s)ργ

 

or
 

P=(γ-1)ρE
At t

 
>

 
t0

 

, a shock wave will move through gas. Its parameters are:

6. 6. Shock in a cold gas sphereShock in a cold gas sphere

3
0 0 0

4m r ,
3

= π ρ

In Eulerian coordinates
 

r, t

Shock velocity

In Lagrangian coordinates m, t

Shock velocity

w 0 w

w 0 w

1 2, U D,
1 1

P DU .

γ +
ρ = ρ =

γ − γ +

= ρ

drD .
dt

=

( ) ( ) ( )

( )

w 0

w 1 3 2 3
0 w

2 3
1 30

w w
w

1 ,
1
2U W,

1 4 3m

P 4 U W.
3m

−

γ +
ρ = ρ

γ −

=
γ + πρ

⎛ ⎞ρ
= π⎜ ⎟
⎝ ⎠

dmW .
dt

=
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7. 7. Shock trajectoryShock trajectory
The shock trajectory is defined by:

In Eulerian coordinates

Shock velocity

Convergence time

The self-similarity index
 

n
 

is yet 
undefined.

In Lagrangian coordinates

Shock velocity

Convergence time

The self-similarity index
 

k
 

is yet 
undefined.

n

f
w 0

f 0

t tr r .
t t

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

n 1

f
0

f 0

0 g0

t tD D ,
t t

1D U .
2

−
⎛ ⎞−

= ⎜ ⎟−⎝ ⎠
γ +

=

0
f 0

0

r nt t .
D

= −

k

f
w 0

f 0

t tm m .
t t

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

( ) ( )

k 1

f
0

f 0

1 3 2 3
0 go 0 0

t tW W ,
t t

1W U 4 3m .
2

−
⎛ ⎞−

= ⎜ ⎟−⎝ ⎠
γ +

= πρ

0
f 0

0

m kt t .
W

= −



8. 8. Gas motion between shock and boundaryGas motion between shock and boundary
The amplitude of a shock depends on distance to the symmetry 

center
 

and overriding compression and rarefaction waves.
 

Gas behavior 
between the shock and the boundary is defined by the following system 
of equations.
In Eulerian coordinates, these are 
the mass conservation equation,

 the equation of motion, the 
equation for pressure, and EOS.

or
Sought are ρ, U, and P.

In Lagrangian coordinates, these 
are the equation of trajectory, the 
mass conservation equation, the 
equation of motion, and EOS.

 
After 

conversion from r
 

and U
 

to R=r and
 C=r2U they read as

or
Sought are R, С, and ρ.

r

r

r

U 2 UU 0,
t r r r

U U 1 PU 0, (8.1)
t r r

P P U 2UU P 0,
t r r r

⎛ ⎞∂ ρ ∂ρ ∂ ρ
+ + ρ + =⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂
+ + =⎜ ⎟∂ ∂ ρ ∂⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
+ + γ + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

P F(s) γ= ρ
P ( 1) E.= γ − ρ

( )

m

2

m

2
4 3

m

R 3C 0,
t

C4 0, (8.2)
t m

FC 2C4 R 0,
t m R

γ

⎛ ⎞∂
− =⎜ ⎟∂⎝ ⎠

⎛ ⎞∂ ρ ∂
+ πρ =⎜ ⎟∂ ∂⎝ ⎠

∂ ρ⎛ ⎞∂
+ π − =⎜ ⎟∂ ∂⎝ ⎠

P F(s) γ= ρ
P ( 1) E.= γ − ρ



9.9.
 

Separation of variablesSeparation of variables
Convert to new independent variables and functions.

Each of systems (8.1) and
 

(8.2) divides into two systems of equations: 
one for the functions of t and the other for the functions of ξ

 
(η, 

respectively).

In Eulerian coordinates, 
from

 
t, r

 
tp

 
t, ξ(t, r),

 
where

In Lagrangian coordinates,
from

 
t, m

 
to

 
t, η(t, m),

 
where

n
f 0

0 f

t tr .
r t t
⎛ ⎞−

ξ = ⎜ ⎟−⎝ ⎠

k
f 0

0 f

t tm .
m t t

⎛ ⎞−
η = ⎜ ⎟−⎝ ⎠

we will seek solution in the form

( ) ( ) ( ) ( )
( ) ( )

P

u

P t , t ,
U t M .

ρ= α ξ ρ = α δ ξ

= α ξ

Π ( ) ( ) ( ) ( )
( ) ( )

R

c

R t T , t ,
C t Z .

ρ= β η ρ = β δ η

= β η

On the shock front
ξ=1

 
η=1



10. 10. Systems of equationsSystems of equations

For the functions of ξ
 

or
 

η:

For the functions of t:
In Eulerian coordinates

δ=δ1

 

, П1

 

=1, M1

 

=1 on the shock 
front.

In Lagrangian coordinates

T1

 

, δ1

 

, Z1 are the values of T, δ, Z
on the shock front.

( )

n 1
0 0 f

u
1 1 f 0

2 n 12
0 0 f

p
1 f 0

D t t1 , ,
1 M t t

D t t .
Π t t

−

ρ

−

⎛ ⎞ρ −γ +⎛ ⎞
α = α = ⎜ ⎟⎜ ⎟δ γ − −⎝ ⎠ ⎝ ⎠

⎛ ⎞ρ −
α = ⎜ ⎟−⎝ ⎠

k
0 0f

R
1 f 0 1

k 1
0 f

c
1 f 0

R t t 1, ,
T t t 1

C t t .
Z t t

ρ

−

⎛ ⎞ ρ− γ +⎛ ⎞
β = β =⎜ ⎟ ⎜ ⎟− δ γ −⎝ ⎠⎝ ⎠

⎛ ⎞−
β = ⎜ ⎟−⎝ ⎠

Here

( )

( )

( )

2MM M ,

n 1M M M, (10.1)
n
2 M n 1M M .

n

δ′ ′− ξ δ + δ = −
ξ
−′ ′δ − ξ + = − δ

γ −′ ′γΠ + − ξ = − −
ξ

Π

ΠΠ Π

1

1 1

1
2

1 1

T A ,
B Z Z 0, (10.2)

CZ C .
Z

′η =
′ ′δ − η δ =

γηη ′ ′− + δ =
δ

( ) ( ) ( ) ( )1 1 1 2A T,Z ,B ,C T, , ,C T, ,Z, .δ δ η δ η



11. 11. SolutionSolution
Equations (10.1) are linear with respect to δ′, M′, П′; equations 

(10.2) are linear with respect to
 

T′, δ′, Z′. They are inhomogeneous. 
Their solutions exist if the appropriate determinants are not zero.

In Eulerian coordinates

Solution:

In Lagrangian coordinates

Solution:
( ) ( )( ) ( )2M M 0. 11.1Δ = − ξ δ − ξ − γ ≠Π

( )

( )

1 2

2
3

R M RM , ,
n n

R M
.

n

− ξ δ′ ′= δ =
ξ Δ ξ Δ

ξ − ξ
′ = −

ξ Δ
Π

( ) ( )1 1B C 0. 11.2Δ = γ − ξ ξ ≠

1 1 2 1 2 1A B C C ZT , , Z .δ η′ ′ ′= δ = =
η Δ Δ

γ 1,1 1,2 4/3 1,4 5/3

n∗ 0,7959 0,7571 0,7293 0,7172 0,6884

k∗ 2,3879 2,2714 2,1831 2,1515 2,0651

A solution also exists if 
simultaneously ∆=0 and all minors 
in the augmented matrix of order 
three are zero.
This is possible at n=n∗

 

.

A solution also exists if 
simultaneously ∆=0 and

 
C2

 

=0.
This is possible at K=K∗

Presenter
Presentation Notes
11. Отражение и касание



12. 12. Reference solutionReference solution
Initial data: P0 = 0, ρ0 = 
1, U0 = 0, Ug0 = -

 
1. 

5 , n 0,688377.
3

γ = =

Boundary velocity Uгр

 

(t). 
Figures

 
1,2,3:

_____    analytical solution;
–O–

 
VOLNA calculations

 with shock captured;
-

 
-

 
-

 
with shock smearing. 

Profiles t1

 

=0,4;
 

t2

 

=0,45;
 t3

 

=0,5;
 

tф
 

=0,51628;

Fig. 1 Fig. 2

Fig. 3
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1133. . Compressible incompressible continuumCompressible incompressible continuum
In Lagrangian coordinates, the equations of mass conservation, the 

equation of motion, and the equation of internal energy take the
 

form

Compressibility βs and
 

sound velocity C
 

are related by

2
2V r U U P4 0, 4 r 0,

t M t M
E VP 0.
t t

∂ ∂ ∂ ∂
− π = + π =

∂ ∂ ∂ ∂
∂ ∂

+ =
∂ ∂

Many understand constancy of V
 

as incompressibility, 
i.e., βs

 

=0 and
 

C2 = ∞. It is an error.
The property of flow is not the property of matter.

2 2 2
s

s s s

1 V P V, C V , C .
V P V

∂ ∂⎛ ⎞ ⎛ ⎞β = − = − =⎜ ⎟ ⎜ ⎟∂ ∂ β⎝ ⎠ ⎝ ⎠

There is no incompressible matter in nature.
There is a class of flows where V=const.
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1144. . Flows with constant densityFlows with constant density
For the flows where V

 
= const and , the system reduces to two 

equations:
2

2r U U P0, 4 r 0.
M t M

∂ ∂ ∂
= + π =

∂ ∂ ∂

the system of 3 equations contains 3 functions:

( ) ( ) ( )r t,M , U t,M , P t,M .

Rayleigh, Hunter and Zababakhin derived their solutions from 
these equations.

With the equation of particle trajectory

V 0
t

∂
=

∂

M

r U
t
∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠

( )14.1
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1155. . Fundamental contradictionFundamental contradiction

The contradiction dissolves if assume that there is a source of energy 
in the medium.

 
In the EOS at V=const

E VP 0
t t

∂ ∂
+ =

∂ ∂

The Navier-Stokes model does not consider energy conservation and 
EOS. This is a source of the following contradiction: 
1. From equation of motion (14.1), it follows that pressure

P
 

changes at  V=const.

2. From equation at
 

it  follows that 

3.
 

From EOS  P
 

=
 

P(V,E)
 

at  V
 

=
 

const  and  E
 

=const, it follows that 
P

 
does not change. 

Viscosity and heat conduction are not enough 
to obtain a flow with V = const.

V 0,
t

∂
=

∂

( ) ( )x xP V const, E V const= = TE g.
t t

∂ ∂
=

∂ ∂
and

A wide class of EOS have the form PT

 

V
 

=
 

(V)ET

 

and thus pressure 
at V

 
= const depends on the dissipative function g.

E 0.
t

∂
=

∂
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1166. . General solutionGeneral solution
The first equation

2r U 0
M

∂
=

∂
has a solution

( )2
B Br U f t .=

This gives the dependence of velocity on coordinate
2 2

B BU U r r .−=

The equation of boundary motion    is integrated with respect 
to t

( )2r U f t .= ( )1
This is true for arbitrary M. On the bubble boundary at M=0,

B
B

dr U
dt

=

The time tf  of cavity convergence is determined from (2) at rB

 

= 0

( )
0

1/3
t

3
B B0

t

r r 3f t dt .
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ( )2

( )
f

0

t
3
B0

t

r 3f t dt 0.+ =∫
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1177. . Determination of pressureDetermination of pressure
Substitute  r2U

 
=

 
f

 
(t)

 
in the equation of motion

Any two of the functions  P∞

 

(t), PB (t), rB (t),
 

and f
 

(t)  are independent.
That is, this is a flow with two-function arbitrariness.

2U P4 r 0
t M

∂ ∂
+ π =

∂ ∂
and find 

Multiply by                            and integrate between 0 and
 

M, 
i.e., between  rB

 

and
 

r

PB

 

is defined either by gas in the cavity, or by surface tension. If these 
are absent, PB

 

= 0.
At

 
r = ∞

P
M

∂
∂

( )
2

2 2 5
P 1 1 df 2f . 1
M 4 r r dt r

⎛ ⎞∂
= − −⎜ ⎟∂ π ⎝ ⎠

2 1
0dM 4 r V dr−= π

( ) ( )
2

B 4 4
0 B B

1 df 1 1 f 1 1P P t . 2
V dt r r 2 r r

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + − − −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

( ) ( )
2

B 4
0 B B

1 df 1 f 1P P t . 3
V dt r 2 r∞

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
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1188. . DissipationDissipation

Write P(t, r) in the form

( )
2

4
0

1 df 1 fP P t . (1)
V dt r 2r∞

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠

Change from P
 

to
 

E with  PV0

 

=
 

ГE. Differentiate  E with respect to time to 
obtain the dissipation rate which gives “incompressibility”

 
V

 
= const.

( ) 2 3

0 2 4 7
M

dP tg 1 1 d f 2 f df 2 fV .
dt Γ dt r dt r dt r

∞⎛ ⎞⎛ ⎞∂
= + − ⋅ +⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
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19. 19. Determination of mean energyDetermination of mean energy
Since V=const, Px

 

and
 

Ex

 

do not vary. Let Px

 

=0
 

and
 

Ex

 

=0.
 

Dissipation 
only changes the thermal energy

0
T

VE P (1)
Γ

= ⋅

The expression for E(r, t) is obtained from (17.2)  

( )3 3
0 0 A B

4M r r .
3

= πρ −

( )
2

B 0 4 4
B B

1 df 1 1 f 1 1E P t V .
Γ dt r r 2 r r
⎛ ⎞⎛ ⎞ ⎛ ⎞

= + − − −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

Multiply  E
 

by  dM=4πr2ρ0

 

dr and integrate between  rB and
 

rA

 

, 
where rA is a boundary of some mass

( ) ( )
( )

( )
( ) ( )

2 2 2
A B A B

m B 0 43 3 3 3
B BA B A B A B

3 r r 3 r r1 df 1 f 1E P t V . 2
Γ dt r 2 r2 r r r r r r

⎛ ⎞⎛ ⎞ ⎛ ⎞− −
⎜ ⎟⎜ ⎟ ⎜ ⎟= + − − −

⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠

Dividing by M0 gives the mean specific energy 
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20. 20. Determination of maxP Determination of maxP andand
 

maxEmaxE
At any time, P

 
is maximal at point rM

 

, where

From (17.1) and
 

(20.1) we obtain the coordinate of the point where 
P=maxP

( ) ( )
0

2

B 4 4
M B M B

1 df 1 1 f 1 1maxP P t . 3
V dt r r 2 r r

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + − − −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

From (17.2)
 

and (20.2)
 

we obtain 

There are three functions of t in these equations. Two of them are 
independent.
Let them be 

( )
t

P 0. 1
M

⎛ ⎞∂
=⎜ ⎟∂⎝ ⎠

( )
1/3

2
M

dfr 2f . 2
dt

⎛ ⎞= ⎜ ⎟
⎝ ⎠

( )BP t=

From (19.1) and
 

(20.3)
 

we obtain

( ) ( )
2

0 B
4 4

M B M B

V P t 1 df 1 1 f 1 1maxE . 4
Γ Γ dt r r 2 r r

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + − − −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

and ( )f t .
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21. 21. The class of elementary solutionsThe class of elementary solutions

Differentiate rB  and
 

substitute in the general solution to obtain

Consider closed cavities in infinite liquid
 

(rA

 

= ∞). Choose the 
functions PB

 

(t)  and  f(t) from the condition that the cavity contains 
vacuum (PB

 

= 0) and the trajectory of its surface is 

2 3n 2
B0 B0

df 3n 1 r U .
dt n

−−
= ⋅ ϕ

n
B B0r r= ϕ

From the condition that rB

 

=0
 

and
 

UB

 

= - ∞
 

at t=tf

 

,
 

it follows that
0 n 1.< <

The functions f(t)
 

and
 

are determined from (1), (2) and (16.2):

( )n 1 B0
B B0 B0

f 0

nrU U , U . 2
t t

−= ϕ = −
−

( ) 2 3n 1
B0 B0f t r U ,−= ϕ

1 3 n 0,4.< <

where ( )f

f 0

t t . 1
t t

−
ϕ =

−

The conditions UB0

 

< 0,  f(t)<0, and
 

are satisfied if  n>1/3.  From
 P∞

 

(t)>0,  it follows that  n<0,4.
 

Hence a solution exists if

df 0
dt

>

df
dt
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2222. . Cumulation coefficientsCumulation coefficients

As rB0

 

/rB → ∞, unbounded cumulation is reached at 1/3<n<1.
At n=0.4 , the result coincides with the Rayleigh-Zababakhin solution.

For rB

 

<<rB0

 

,

KE

 

is independent of time. Em

 

increases with  maxE, so their ratio remains 
constant.  For 1/3<n<0.4, KE

 

takes values within 1<
 

KE

 

<∞.

Max P at  t=t0   follows from (20.3) at  ϕ=1. So,

( )
( )

( )2 1 n n
B0

P
0 B

maxP t rK .
maxP t r

−
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

4 3

E
3n 3n 1K 1 .

2 5n 2n
−⎛ ⎞= + ⎜ ⎟− ⎝ ⎠

( ) ( ) ( )2 1 n n 2 1 n n4 32 2
B0 B0 B0 B0

m
B B

2 5nU r U r3 3n 1 5 1maxE , E .
Γ r 2 2n 2 n 2Γ r n

− −⎛ ⎞ −⎛ ⎞ ⎛ ⎞−⎛ ⎞= − + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
Then
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The model is simple. The density of gas in the bubble only depends 
on time and gas compression is isentropic. So,

23. 23. GasGas--filled bubble collapsefilled bubble collapse

3
2B0 B BK

B B0 B0 B0
B B0 BK

r r rP P , f U r ,
r r r

γ
⎛ ⎞ −

= =⎜ ⎟ −⎝ ⎠

where
 

rBK

 

is minimal bubble radius.
Differentiate f(t) to obtain

( ) ( )B0 BK 2 2
K 0 B0 B0 BK BK K BK2

KB0 B0

2 r r dft t 3r 4r r 8r , f 0. 0, U 0.
15U r dt

− ⎛ ⎞= − + + = = =⎜ ⎟⋅ ⎝ ⎠
P is maximal at the point

( )( )
1 3

1 32 2
M B B BK

dfr 2f 4r r r .
dt

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

rM

 

decreases as rB

 

decreases and                           at time  tM .

From this time the boundary decelerates:                     and

t

rAt the time when the boundary stops,
( )

2

2
B B0 BK

df f .
dt 2r r r

=
−

B M BK
4r r r
3

= =

B

P 0
M
∂⎛ ⎞ <⎜ ⎟∂⎝ ⎠

( )BmaxP P t .=

rBK

0
r0

tK

rM

tM

K
M
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At time tK

 

,

24. 24. Cumulation coefficientsCumulation coefficients

3 3
B0 0 B0

K B0 K B0
BK BK

r V rmaxP P , maxE P .
r Γ r

γ γ
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

At time  tK

 

, fK

 

=0  and                         then

From the equality maxEK

 

=EmK

 

, it follows that cumulation is absent.

EK 1.=

Determine maxP0

 

at t0

 

from (19.3)

So, according to the cumulation coefficient

K

df 0,
dt

⎛ ⎞
=⎜ ⎟

⎝ ⎠

3
0 B0

m K B0
BK

V rE P .
r r

γ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

K
P

0

maxPK ,
maxP

=

energy cumulation is bounded.

( )

12
B0 BK BK

0 B0 4 34 3
0 B0 B0BK B0

U r r3maxP P 1 .
2V r r2 1 r r

−⎛ ⎞⎛ ⎞
⎜ ⎟= + − −⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
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On the inner r = rB

 

and outer r
 

=
 

rA

 

shell surfaces, PB

 

= 0,  PA

 

= 0.
 All processes depend on initial energy and energy release g. The 

function f
 

depends on rB

 

(t)  and  rA

 

(t):

25. 25. Shell convergenceShell convergence

( )
( )

( ) ( )1 2 2 2 2
A B A BA B A0 B02

B0 B0 3 3
A0 B0 A B A B

f r r r rr r r r dff U r , .
r r r r dt 2r r

+ +⎛ ⎞−
= =⎜ ⎟− ⋅⎝ ⎠

maxP  is achieved in the shell at the point

( ) ( )( ) 1 32 2
M A B A B A Br r r 0,25 r r r r .

−
= + +

So, rM

 

→ 0   as rB

 

→ 0.
 

The average energy of the shell increases in 
convergence, but maxE

 
increases greater. Compare the cumulation 

coefficients
3

B0 B0
p 4 E 5

B B

r rK G and K G ,
r r

⎛ ⎞ ⎛ ⎞
≈ ≈⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

where
 

G4

 

=
 

const,  G5

 

=
 

const   at
 

rB

 

= 0.   The value of Kp

 

was obtained 
by Zababakhin in 1965.
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26. 26. ConclusionConclusion

1. Interest to energy cumulation does not fade. Material models get
 more and more sophisticated. Mathematical modeling plays an 

important role in energy cumulation studies.
2. Analytical solutions grow in importance as references for 

verification of numerical accuracy.
3. Solutions with arbitrary self-similarity indises are derived for 

shock convergence in ideal gas.
 

Entropy there is essentially dependent 
on the Lagrangian coordinate.

 
Comparison with VOLNA calculations is 

provided. 
4. Solutions to bubble collapse and converging shell in flows with 

constant density are derived. It is shown that energy needs to be 
applied to the system to ensure

 
ρ

 
=

 
const in compressible liquid flows.

 With this energy input the cumulation coefficient reduces.                           
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Thank you 
for your 

time.


	Slide Number 1
	1.  Cumulation
	2. Energy cumulation
	3. Expectations and disappointments
	4.  The history of cumulation study
	5.  The history of cumulation in shock waves
	6. Shock in a cold gas sphere 
	7. Shock trajectory
	8. Gas motion between shock and boundary
	9. Separation of variables
	Slide Number 11
	11. Solution
	12. Reference solution  
	13. Compressible incompressible continuum
	14. Flows with constant density 
	15. Fundamental contradiction 
	16. General solution  
	17. Determination of pressure  
	18. Dissipation 
	19. Determination of mean energy 
	20. Determination of maxP  and  maxE 
	21. The class of elementary solutions
	22. Cumulation coefficients 
	23. Gas-filled bubble collapse 
	24. Cumulation coefficients 
	25. Shell convergence 
	26. Conclusion  
	Slide Number 28

