

Токсические эффекты при проведении стереотаксической лучевой терапии у пациентов с раком предстательной железы

Рогачева Д.А., к.м.н. Сарычева М.М., к.м.н. Мозерова Е.Я., к.м.н. Ложков А.А., Тимохина Д.М., Карабут Р.Ю., Печерица А.Ю., Сабельникова Ж.Е.

Cancer statistics, 2022

Estimated New Cases

			Males	Fema	ales		
Prostate	268,490	27%			Breast	287,850	31%
Lung & bronchus	117,910	12%			Lung & bronchus	118,830	13%
Colon & rectum	80,690	8%		A	Colon & rectum	70,340	8%
Urinary bladder	61,700	6%			Uterine corpus	65,950	7%
Melanoma of the skin	57,180	6%			Melanoma of the skin	42,600	5%
Kidney & renal pelvis	50,290	5%			Non-Hodgkin lymphoma	36,350	4%
Non-Hodgkin lymphoma	44,120	4%			Thyroid	31,940	3%
Oral cavity & pharynx	38,700	4%			Pancreas	29,240	3%
Leukemia	35,810	4%			Kidney & renal pelvis	28,710	3%
Pancreas	32,970	3%			Leukemia	24,840	3%
All Sites	983,160	100%			All Sites	934,870	100%

Estimated Deaths

			Males	Females
Lung & bronchus	68,820	21%		Lung & bronchus 61,360 21%
Prostate	34,500	11%		Breast 43,250 15%
Colon & rectum	28,400	9%		Colon & rectum 24,180 8%
Pancreas	25,970	8%		Pancreas 23,860 8%
Liver & intrahepatic bile duct	20,420	6%		Ovary 12,810 4%
Leukemia	14,020	4%		Uterine corpus 12,550 4%
Esophagus	13,250	4%		Liver & intrahepatic bile duct 10,100 4%
Urinary bladder	12,120	4%		Leukemia 9,980 3%
Non-Hodgkin lymphoma	11,700	4%		Non-Hodgkin lymphoma 8,550 3%
Brain & other nervous system	10,710	3%		Brain & other nervous system 7,570 3%
All Sites	322,090	100%		All Sites 287,270 100%

СВЕДЕНИЯ О КОНТИНГЕНТЕ БОЛЬНЫХ СО ЗЛОКАЧЕСТВЕННЫМИ НОВООБРАЗОВАНИЯМИ, СОСТОЯЩЕМ НА УЧЕТЕ В ОНКОЛОГИЧЕСКИХ УЧРЕЖДЕНИЯХ В 2021 Г.

Территория: РОСС

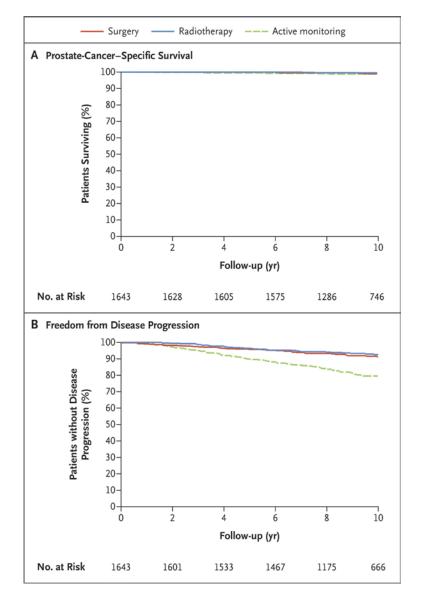
	W	Взято на учет больных	в т.ч. выявле-	Находилис на кон		из них 5 ле	т и более	Индекс накоплени	Леталь-
Локализация опухоли	Код МКБ 10	с впервые в жизни уст. диагнозом ЗНО	ны активно, %	абсолют- ное число	на 100 тыс. населения	абсолют- ное число	% от состоящ. на учете	я континген- тов	ность, %
Злокачественные новообразования - всего	C00-96	490588	24,1	3940529	2690,5	2262078	57,4	8,0	5,2
У детей в возрасте 0-14 лет	C00-96	2928	5,8	22905	88,4	10464	45,7	7,8	2,2
У детей в возрасте 0-17 лет	C00-96	3575	6,0	29350	96,6	14755	50,3	8,2	2,1
Губа	C00	1675	35,4	32914	22,5	24985	75,9	19,7	0,9
Полость рта	C01-09	8461	16,4	45166	30,8	23637	52,3	5,3	9,3
Глотка	C10-13	5097	9,0	18754	12,8	8137	43,4	3,7	15,3
Пищевод	C15	6455	11,0	13876	9,5	5313	38,3	2,1	27,1
Желудок	C16	26480	13,1	133548	91,2	78108	58,5	5,0	12,8
Ободочная кишка	C18	33378	14,3	235782	161,0	129689	55,0	7,1	6,8
Прямая кишка, ректосиг. соединение, анус	C19-21	25753	18,5	177392	121,1	96036	54,1	6,9	7,0
Печень и внутрипеченочные желчные протоки	C22	5490	7,3	8970	6,1	3110	34,7	1,6	36,0
Поджелудочная железа	C25	13845	5,8	20630	14,1	6951	33,7	1,5	38,1
Горгань	C32	5563	13,2	42687	29,1	24818	58,1	7,7	6,5
Трахея, бронхи, легкое	C33,34	44482	22,6	138854	94,8	62464	45,0	3,1	19,9
Кости и суставные хрящи	C40,41	1162	10,3	15280	10,4	10938	71,6	13,1	3,9
Меланома кожи	C43	10110	27,8	103129	70,4	63081	61,2	10,2	2,9
Кожа (кроме меланомы)	C44	58176	40,2	442619	302,2	164108	37,1	7,6	0,4
Соединительная и другие мягиие ткани	C47,49	2861	12,3	32800	22,4	21868	66,7	11,5	4,2
Молочная железа	C50	62729	39,3	745710	509,2	476542	63,9	11,9	2,5
Шейка матки	C53	14468	34,7	185507	126,7	125247	67,5	12,8	2,9
Тело матки	C54	22951	25,6	280608	191,6	183041	65,2	12,2	1,9
Яичник	C56	11584	17,1	117952	80,5	75133	63,7	10,2	5,0
Предстательная железа	C61	35428	29,6	274361	187,3	130467	47,6	7,7	4,0
Почка	C64	18306	23,0	194464	132,8	119456	61,4	10,6	3,3
Мочевой пузырь	C67	13139	17,8	117188	80,0	66976	57,2	8,9	4,0
Щитовидная железа	C73	11243	32,7	184556	126,0	130692	70,8	16,4	0,5
Злокачественные лимфомы	C81-86;88, 90,96	14087	8,3	137286	93,7	86555	63,0	9,7	4,3
Лейкемии	C91-95	8636	8,2	87228	59,6	53584	61,4	10,1	4,8

Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой Состояние онкологической помощи населению России в 2021 году. – М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии»

10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer

Variable	Active Monitoring (N = 545)	Surgery (N = 553)	Radiotherapy (N = 545)	P Value
Prostate-cancer mortality				
Total person-yr in follow-up	5393	5422	5339	
No. of deaths due to prostate cancer†	8	5	4	
Prostate-cancer–specific survival — % (95% CI)†				
At 5 yr	99.4 (98.3-99.8)	100	100	
At 10 yr	98.8 (97.4-99.5)	99.0 (97.2-99.6)	99.6 (98.4-99.9)	
Prostate-cancer deaths per 1000 person-yr (95% CI)†	1.5 (0.7-3.0)	0.9 (0.4-2.2)	0.7 (0.3-2.0)	0.48
Incidence of clinical progression:				
Person-yr of follow-up free of clinical progression	4893	5174	5138	
No. of men with clinical progression	112	46	46	
Clinical progression per 1000 person-yr (95% CI)	22.9 (19.0-27.5)	8.9 (6.7-11.9)	9.0 (6.7-12.0)	< 0.001
ncidence of metastatic disease				
Person-yr of follow-up free of metastatic disease	5268	5377	5286	
No. of men with metastatic disease	33	13	16	
Metastatic disease per 1000 person-yr (95% CI)	6.3 (4.5-8.8)	2.4 (1.4-4.2)	3.0 (1.9-4.9)	0.004
All-cause mortality				
Total person-yr in follow-up	5393	5422	5339	
No. of deaths due to any cause	59	55	55	
All-cause deaths per 1000 person-yr (95% CI)	10.9 (8.5-14.1)	10.1 (7.8-13.2)	10.3 (7.9-13.4)	0.87

^{*} P values were calculated with the use of a log-rank test of the null hypothesis of no difference in effectiveness across the three treatments. The planned adjusted analysis was not possible owing to the low number of events.

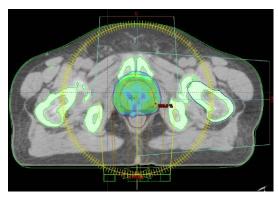

10-и летняя опухолеспецифическая выживаемость:

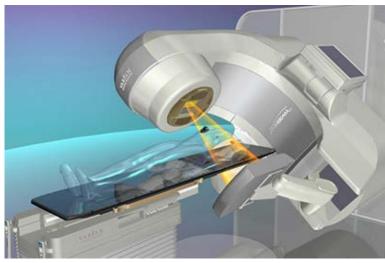
99% (РПЭ) против 99,6% (ЛТ)

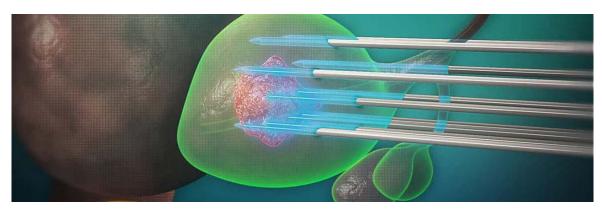
10-и летняя выживаемость без признаков болезни:

91,1% (РПЭ) против 91% (ЛТ)

10-Year Outcomes After Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer Hamdy FC, Donovan JL, Lane JA, et al N Engl J Med 2016:375:1415–24


[†] Deaths due to prostate cancer were defined as deaths that were definitely or probably due to prostate cancer or its treatment, as determined by the independent cause-of-death evaluation committee.


Disease progression was defined as death due to prostate cancer or its treatment; evidence of metastatic disease; long-term androgen-deprivation therapy; clinical T3 or T4 disease; and ureteric obstruction, rectal fistula, or the need for a permanent catheter when these are not considered to be a complication of treatment.


Технологии лучевой терапии

- Дистанционная лучевая терапия (3D-конформная, IMRT, VMAT, стереотаксическая)
- Внутритканевая лучевая терапия (брахитерапия) (низкомощностная, высокомощностная)

Стереотаксическая лучевая терапия

- > Высокая эффективность
- > Не инвазивность и хорошая переносимость
- > Может использоваться у широкой категории больных
- > Радиобиологические достоинства:
- Повышение терапевтического интервала, точности подведения дозы
- Короткое время лечения

Считается, что радиобиология РПЖ с его низким α/β-соотношением и медленной пролиферацией клеток делает РПЖ чувствительным к высокой дозе на фракцию, и поэтому гипофракционирование выгодно, особенно с точки зрения радиобиологической эффективности

Снижение койко-день с 8 недель до 2 недель

Dose-escalated robotic SBRT for stage I–II prostate cancer

Institution	Platform	Dose fractionation	Median F/U years	Risk group	Pts	5-Year bDFS ^a (%)
Virginia Mason (71)	Gantry-based linac	6.7 Gy × 5	3.4	Low	40	90 ^b
Stanford (73)	CyberKnife	7.25 Gy × 5	2.7	Low and low-intermediate	67	94
Stanford, Naples (79)	CyberKnife	$7 - 7.25 \text{Gy} \times 5$	5	Low and low-intermediate	41	93
Winthrop Hospital (78)	CyberKnife	$7 - 7.25 \text{Gy} \times 5$	6	Low	324	97
				Intermediate	153	91
San Bortolo (80)	CyberKnife	7 Gy × 5	3	Low, intermediate, and high	100	94
Pooled eight institutions (74)	CyberKnife	36-40 Gy in 4-5 fxs	3	Low	641	95
				Intermediate	334	84
				High	125	81
Katz and Kang (81)	CyberKnife	$7 - 7.25 \text{Gy} \times 5$	5	High	97	68
Multi-institution (82)	CyberKnife	8 Gy × 5	3	Intermediate	137	97
Sunnybrook (76)	Gantry-based linac	7 Gy × 5	4.75	Low	84	97
Twenty-first century (77)	Gantry-based linac	8 Gy × 5	5	Low	98	99

^aNadir+2 definitions.

bDFS, biochemical disease-free survival; SBRT, stereotactic body radiotherapy.

Front. Oncol., 07 April 2015 Sec. Radiation Oncology

^bFour-year bDFS reported.

Technique	Institution Details		Median F/U years	Pts	Late GU toxicity (%)		Late GI toxicity (%)	
					Gr2	Gr3	Gr2	Gr3
SBRT (CyberKnife)	Stanford (73)	7.25 Gy × 5	2.7	67	5.3	3.5	2.0	0
	Winthrop Hosp (78)	$7 - 7.25 \text{Gy} \times 5$	5.0	304	8.2	1.6	4.6	0
	San Bortolo Hosp (80)	7 Gy × 5	3.0	100	3.0	1.0	1.0	0
	Multi-institutional (75)	$8\mathrm{Gy}\times5$	3.0	137	11.0	0.8	1.0	0
3-D-Conf RT	Dutch Random Trial (27)	78.0 Gy	4.2	333	26.0	13.0	27.0	5.0
	MDA Random Trial (93)	78.0 Gy	8.7	151	7.3	3.3	19.0	6.6
IMRT	Memorial SKCC (83)	86.4 Gy	4.4	478	13.0	2.5	3.3	0.4
Protons	MGH PROG (22)	79.2 Gy	8.9	196	21.0	1.5	24.0	1.0
LDR	RTOG 9805 (16)	145 Gy	8.1	94	20.0	3.1	5.0	0

SBRT, stereotactic body radiotherapy; IMRT, intensity-modulated radiotherapy; LDR, low-dose rate brachytherapy; RT, radiation therapy.

Photons, Protons, SBRT, Brachytherapy—What Is Leading the Charge for the Management of Prostate Cancer? A Perspective From the GU Editorial Team

Table 1 Summary of recent retrospective studies comparing brachytherapy with SABR for prostate cancer
--

Study	Design	N	Follow-up	Outcomes
Kishan et al, 2015 ²⁸	2 institutions, retrospective,	SBRT: 130 men	40 mo	nPSA <0.5: 76.2%
	definitive SBRT or HDR	HDR: 220 men	49 mo	nPSA <0.5: 75.9%
Gonzalez-Motta and Roach,	Systematic literature review,	SBRT boost: 6 studies	3.5-5.5 y	5-y bDFS: 69%-98%
2018^{29}	SBRT boost vs HDR boost	HDR boost: 41 studies	2.6-10.3 y	5-y bDFS: 41%-96%
Hegde et al, 2018 ³⁰	Multi-institutional,	SBRT: 300 men	4 y	BRFS: 95.3%
	retrospective, definitive SBRT or HDR	HDR: 137 men		BRFS: 98.5%
Mbeutcha et al, 2017 ³¹	2 institutions, retrospective,	Salvage SBRT: 18 men	14.5 mo	bNED: 55.6%
	salvage SBRT or HDR	Salvage HDR: 10 men	22.5 mo	bNED: 50%
Gogineni et al ³²	Single institution,	SBRT: 118 men	4.3 y	5-y bDFS: 97.6%
-	retrospective, definitive	LDR: 219 men		5-y bDFS: 98.5%
	SBRT or LDR			

Abbreviations: bDFS = biochemical disease free survival; bNED = PSA failure-free survival; BRFS = biochemical recurrence free survival; HDR = high dose rate; LDR = low dose rate; nPSA = nadir PSA; SBRT = stereotactic body radiation therapy.

EDITORIAL

Photons, Protons, SBRT, Brachytherapy What Is

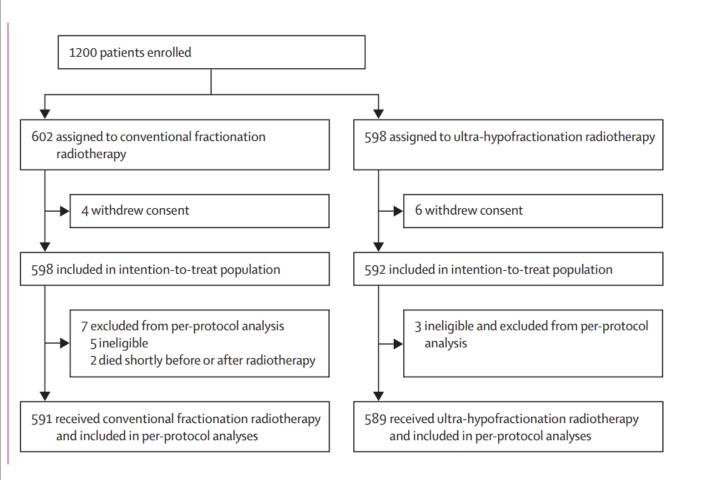
Leading the Charge for the Management of

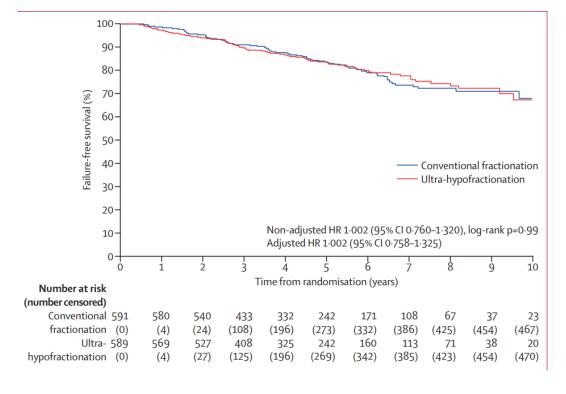
Prostate Cancer? A Perspective From the GU

Editorial Team

Ananya Choudhury, MA (Cantab), PhD, MRCP, FRCR,*,y

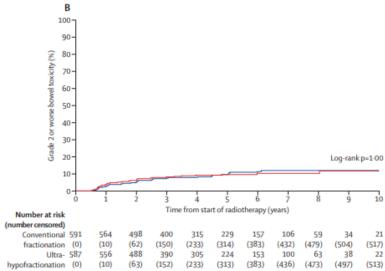
Ann Henry, MD, FRCR,z Timur Mitin, MD, PhD,x Ronald Chen, MD, MPH,k

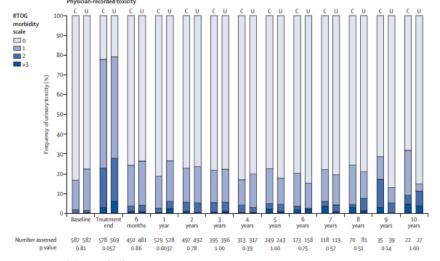

Nuradh Joseph, MD, FRCR, {,# and Daniel E. Spratt, MD, PhD**

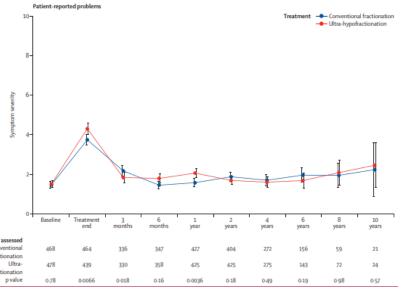


Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial

Anders Widmark, Adalsteinn Gunnlaugsson, Lars Beckman, Camilla Thellenberg-Karlsson, Morten Hoyer, Magnus Lagerlund, Jon Kindblom, Claes Ginman, Bengt Johansson, Kirsten Björnlinger, Mihajl Seke, Måns Agrup, Per Fransson, Björn Tavelin, David Norman, Björn Zackrisson, Harald Anderson, Elisabeth Kjellén, Lars Franzén, Per Nilsson


Lancet, 2019 Aug 3;394(10196):385-395





Острая токсичность, степень 2+ GU (мочеполовая):

28% (7 фракций)

23% (39 фракций)

P=0.057

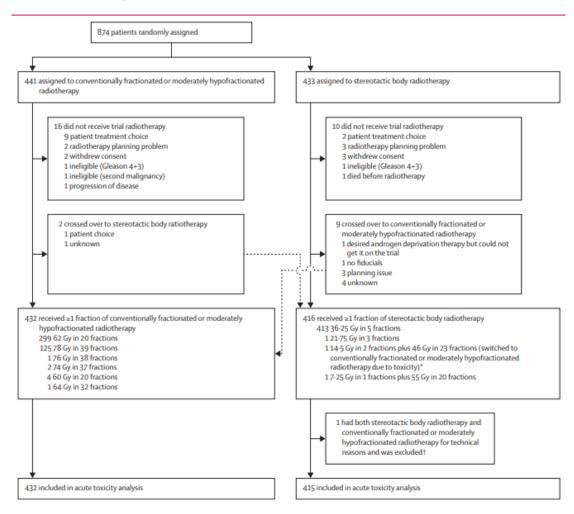
Поздняя токсичность, степень 2+ GU в течение

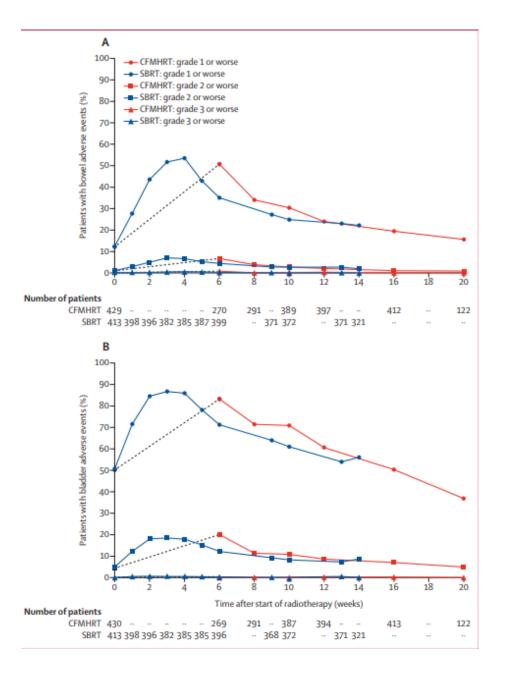
1 года после лечения:

6% (7 фракций)

2% (39 фракций)

P=0.0037


Поздняя токсичность, степень 2+ GU в течение 5 лет:


5% vs 5%

Токсичность со стороны прямой кишки (GI): нет разницы Эректильная функция: без существенной разницы между двумя группами

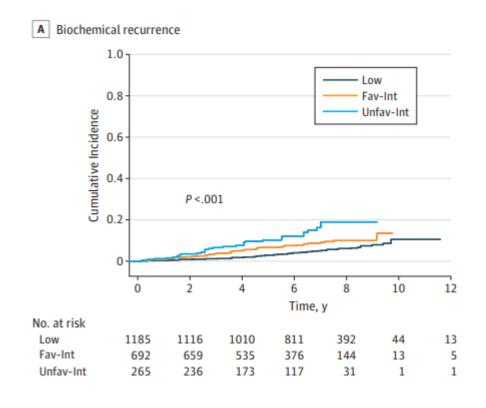
Intensity-modulated fractionated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): acute toxicity findings from an international, randomised, open-label, phase 3, non-inferiority trial

Douglas H Brand*, Alison C Tree*, Peter Ostler, Hans van der Voet, Andrew Loblaw, William Chu, Daniel Ford, Shaun Tolan, Suneil Jain, Alexander Martin, John Staffurth, Philip Camilleri, Kiran Kancherla, John Frew, Andrew Chan, Ian S Dayes, Daniel Henderson, Stephanie Brown, Clare Cruickshank, Stephanie Burnett, Aileen Duffton, Clare Griffin, Victoria Hinder, Kirsty Morrison, Olivia Naismith, Emma Hall, Nicholas van As, on behalf of the PACE Trial Investigators

Long-term Outcomes of Stereotactic Body Radiotherapy for Low-Risk and Intermediate-Risk Prostate Cancer

Amar U. Kishan, MD; Audrey Dang, MD; Alan J. Katz, MD, JD; Constantine A. Mantz, MD; Sean P. Collins, MD, PhD; Nima Aghdam, MD; Fang-I Chu, PhD; Irving D. Kaplan, MD; Limor Appelbaum, MD; Donald B. Fuller, MD; Robert M. Meier, MD; D. Andrew Loblaw, MD; Patrick Cheung, MD; Huong T. Pham, MD; Narek Shaverdian, MD; Naomi Jiang, MD; Ye Yuan, MD, PhD; Hilary Bagshaw, MD; Nicolas Prionas, MD, PhD; Mark K. Buyyounouski, MD, MS; Daniel E. Spratt, MD; Patrick W. Linson, MD; Robert L. Hong, MD; Nicholas G. Nickols, MD, PhD; Michael L. Steinberg, MD; Patrick A. Kupelian, MD; Christopher R. King, MD, PhD

Биохимический рецидив в течение 7 лет Низкий риск: 4,5%


Промежуточный благоприятный: 8,6%

Промежуточный неблагоприятный: 14,9%

Только 10% в этой группе получали АДТ

JAMA Netw Open. 2019

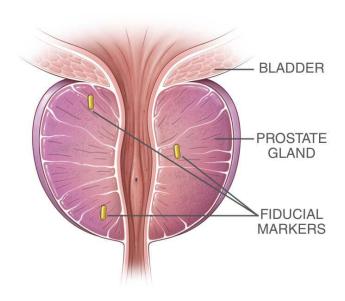
Source	Years Treated	No. of Patients	Follow-up, Median (Range), y	Dose/Fraction (% of Patients Who Received Dose/Fraction)	Prescription Specification, %	Risk Group, %	Original Toxic Event Scoring
Masen et al, ¹⁶ 2007	2000-2004	40	5.9 (0.7-15.0)	6.7 Gy ×5	90 Of prescribed dose to cover 100 of GTV	100 Low	RTOG and CTC v 2.0
King et al, ¹⁷ 2012	2003-2009	67	9.5 (3.3-13.3)	7.25 Gy ×5	100 Of prescribed dose to cover 95 of PTV	73 Low, 15 Fav Int, and 2 Unfav Int	RTOG
Katz and Kang, ¹⁸ 2014	2006-2010	477	7.9 (0.5-9.9)	7 Gy ×5 (32) and 7.25 Gy ×5 (68)	100 Of prescribed dose to cover 95 of PTV	68 Low, 22 Fav Int, and 9.8 Unfav Int	RTOG
Mantz, ¹⁹ 2014	2007-2012	415	7.7 (5.0-10.4)	8 Gy ×5	100 Of prescribed dose to cover 98 of PTV	68.2 Low, 27 Fav Int, and 5 Unfav Int	CTCAE v 3.0
Meier et al, ²⁰ 2018	2008-2011	141	5.0 (0.1-8.2)	7.25 Gy ×5	100 Of prescribed dose to cover 95 of PTV	35 Low, 33 Fav Int, and 31 Unfav Int	CTCAE v 4.0
Fuller et al, ²¹ 2018	2007-2012	206	5.0 (0.1-9.6)	9.5 Gy ×4	100 Of prescribed dose to cover 95 of PTV	43 Low, 35 Fav Int, and 21 Unfav Int	CTCAE v 4.0
Alayed et al, ²² 2018	2006-2008	84	9.6 (1.0-10.8)	7 Gy ×5	95 Of prescribed dose to cover 99 of PTV	100 Low	CTCAE v 3.0
Alayed et al, ²² 2018	2010	30	6.8 (5.7-7.2)	8 Gy ×5	95 Of prescribed dose to cover 99 of PTV	60 Low, 30 Fav Int, and 10 Unfav Int	CTCAE v 3.0
McBride et al, ²³ 2012	2006-2011	135	6.3 (0.1-10.3)	7.25 Gy ×5	100 Of prescribed dose to cover 95 of PTV	35 Low, 31 Fav Int, and 34 Unfav Int	CTCAE v 4.0
UCLA ²⁴	2010-2012	95	6.0 (0.3-8.1)	8 Gy ×5	100 Of prescribed dose to cover 95 of PTV	91 Low, 5 Fav Int, and 4 Unfav Int	CTCAE v 4.0
Fuller et al, ²⁵ 2014	2006-2012	51	6.0 (1.7-10.1)	9.5 Gy ×4	100 Of prescribed dose to cover 95 of PTV	1 Low, 71 Fav Int, and 28 Unfav Int	CTCAE v 3.0
Kataria et al, ²⁶ 2017	2007-2012	402	4.3 (1.8-9.1)	7 Gy ×5 (33) and 7.25 Gy ×5 (67)	100 Of prescribed dose to cover 95 of PTV	36 Low, 48 Fav Int, and 16 Unfav Int	CTCAE v 4.0 only for grade ≥3 toxic events
Total	2000-2012	2142	6.9 (0.1-15.0)	NA	NA	65 Low, 25 Fav Int, and 9.9 Unfav Int	NA

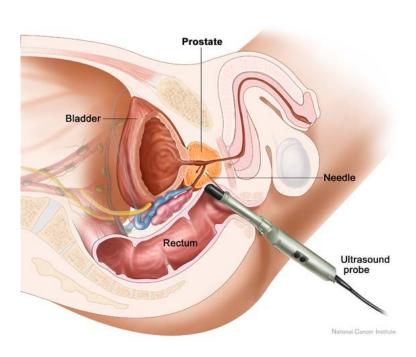
		Cumulative Inciden	ce Estimate (95% CI)	
Toxic Event	Crude Incidence, No. (%)b	5 y	7 y	10 y
Grade 2				
Acute GU	153 (9.0)	NA	NA	NA
Acute GI	56 (3.3)	NA	NA	NA
Late GU	163 (9.6)	11.2 (9.7-12.8)	12.3 (10.8-14.0)	13.4 (11.6-15.4)
Late GI	67 (3.9)	4.5 (3.6-5.6)	4.5 (3.6-5.6)	4.5 (3.6-5.6)
Grade ≥3				
Acute GU	13 (0.6)	NA	NA	NA
Acute GI	2 (0.09)	NA	NA	NA
Late GU	46 (2.1)	1.8 (1.3-2.5)	2.4 (1.8-3.2)	3.2 (2.2-4.6)
Late GI	7 (0.3)	0.4 (0.2-0.8)	0.4 (0.2-0.8)	0.4 (0.2-0.8)

Материалы и методы

Подготовка к проведению стереотаксической лучевой терапии на роботизированной на системе «КиберНож»

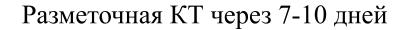
- > Установка ретгеноконтрастных меток
- > КТ разметка без контраста с толщиной среза 1 мм через 7 дней после установки маркеров
- > CTV включал предстательную железу и проксимальные отделы семенных пузырьков
- ▶ все пациенты получали суммарную дозу 35 Гр за 5 фракциях по 7,0 Гр

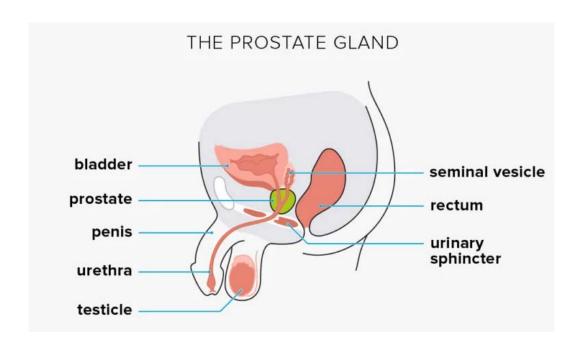




Золотые маркеры (gold fiducials)

Имплантируют 3 маркера под УЗИ контролем Маркеры очень хорошо видны на снимкам в процессе лечения, что помогает контролировать положение маркеров


Если не использовать контроль за положением простаты в процессе сеанса лечения, примерно у 10% пациентов не удастся выполнить требование по покрытию мишени облучения (PTV D95 of >90%)



Подготовка прямой кишки, мочевого пузыря

Мочевой пузырь должен быть наполнен (ощущение «полного» мочевого пузыря) 500-700 мл воды за 30 минут до КТ/ сеанса СТЛТ Прямая кишка должна быть пустой, если прямая кишка растянута газами и содержимым, следует рекомендовать пациенту провести подготовку с очисткой кишечника микроклизмами

Процесс лечения

Всем пациентам проведен курс стереотаксической лучевой терапии на предстательную железу с подведением суммарной очаговой дозы в 35 Гр за 5 фракций

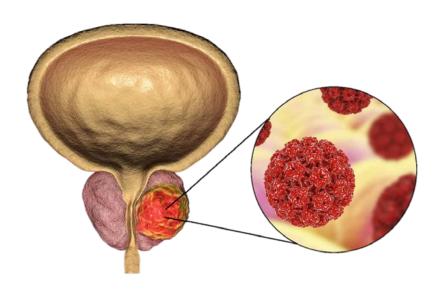
расчет по 80%-й изодозе, максимальная доза в объеме составила 43 Гр

Dose Statistics Table

Delivery System: CK1 1109-156077874586058752

Collimator: Iris
Patient Name: GI Kostik
Medical ID: 22183
Plan Name: Final Iris

A C C U R A


	_						
VOI	Min (cGy)	Mean (cGy)	Max (cGy)	CI	nCl	н	Coverage (%
All Target Regions	326.76	3,281.50	4430.38	1.10	1.46	1.27	74.90
Prostate	3483.89	3,963.77	4430.38	1.51	1.51	1.27	99.98
PTV	3294.82	3,862.56	4430.38	1.10	1.13	1.27	97.19
Seminal Vesicles	326.76	1,348.93	3715.00	434.62	53,136.64	1.27	0.82
Bladder	36.27	785.08	3776.23	n/a	n/a	n/a	n/a
Rectum	191.56	1,161.76	3741.49	n/a	n/a	n/a	n/a
Left Femoral Head	69.87	441.94	1141.61	n/a	n/a	n/a	n/a
Right Femoral Head	88.33	275.31	798.00	n/a	n/a	n/a	n/a
Bladder wall	36.27	964.27	3776.23	n/a	n/a	n/a	n/a

Результаты лечения

Медиана наблюдения	120 месяцев
Выживаемость	1-летняя ОВ – 100%
	2-летняя ОВ – 98,5 %
	5-летняя OB – 95,5 %
Биохимический рецидив	20,5% случаев (n=14) у 5 человек отмечена генерализация процесса с метастазами в кости

Оценка токсических эффектов

Низкий риск прогрессирования	Частота токсических эффектов – 13 случаев (4 ранних, 9 поздних)
Средний риск прогрессирования	Частота токсических эффектов – 16 случаев (4 ранних, 12, поздних)
Ранняя лучевая токсичность	Дизурия 1 ст. Лучевой ректит 1 ст. (n=8)
Поздняя лучевая токсичность	Лучевой цистит 1 ст 30,8% (n=21) Лучевой ректит не отмечен

Выводы

Стереотаксическая лучевая терапия является современным и безопасным методом лечения, позволяющим за короткий промежуток времени подвести высокие дозы излучения с минимальными рисками возникновения тяжелой лучевой токсичности

