

Neutronics Conceptual Research on a Hybrid Blanket of CFETR

Xue-Ming Shi

Institute of Applied Physics and Computational Mathematics, Beijing, China

June 2, Session 6-6,ZST2023

Outline

- 1. Background
- 2. Blanket neutronics and Numerical tools
- **3. Numerical results**
- 4. Summary

1. Background

CFETR is under engineering design...

Tritium self-sufficiency challenge: $TBR_{ach} \ge TBR_{req}$

Fig. 2. Calculated TBR for a range of breeding margins.

Tritium self-sufficiency challenge: $TBR_{ach} \ge TBR_{req}$

- TBR_{req} mainly depends on Tritium burnup fraction(η_f) and Tritium processing Time(t_p)
- According to current technique status, $TBR_{req} > 1.2$
- As the progress in fusion technology, TBR_{req} may be lowered dramatically but uncertainty still exits.

There are large uncertainties in achieving T Self-Sufficiency

State of the art (ITER: $f_b \sim 0.35\%$, $\eta_f < 50\%$) achieving T self-sufficiency is <u>Unlikely</u>. To change this to <u>Likely</u>, we must:

• Lower Required TBR: R&D to achieve $f_h \ge n_f \ge 5\%$ and $t_n \le 6$ hours (how to get there?)

Fig.3 TBR_{rea} Vs η_f and t_p

Tritium self-sufficiency challenge: $TBR_{ach} \ge TBR_{req}$

If TBR_{req} cann' t be lowered into a reasonable level in the future, **Tritium self-sufficiency** is impossible for pure fusion.

Table 1 European Demo blanket design results in 2014

DEMO Concept	Tritium Breeder	Coolant	TBR _{3D} (2014)
HCPC	Li ₄ SiO ₄ /Be	Не	1.04
HCLL	PbLi	Не	1.07
WCLL	PbLi	Water	1.04
DCLL	PbLi	He/PbLi	1.13

Fusion fission hybrid blanket is an backup for the traditional fusion blankets concept.

Fusion Fission Hybrid Reactor

- Breeders were popular before 1980s, to produce plutonium for fission reactors, and form the so called fusion fission symbiotic system Breeders will need frequent separation of plutonium from uranium, which limits its development
- Transmuters become more popular after 1990s, as the inventory of accumulated spent fuel increased.

Transmuters need tens of tons of plutonium in the blanket, which is nearly ten times the plutonium in a fast reactor

Breeding and burning. Fusion power 300~500MW, Q~5.

Nearly 600 tons **nature uranium**, which can be reused in multiple cycles, **Breed and burn of plutonium in blanket simplified reprocessing without separation of TRUs**

2. Blanket neutronics and Numerical tools

Couple of Neutron transportation and burnup

Nearly 340 nuclei and 9 different types transition cross sections are considered in the transport calculation(MCNP) Nearly 1700 nuclei are considered in burnup calculation(ORIGENS)

MCORGS=MCNP+ORIGENS

 $M = \frac{energy \text{ deposited in the blanket by one fusion source}}{\text{energy released by one fusion reaction(17.6Mev)}}$

$$TBR = \int (\Sigma_{(n,T)}^{Li^6} + \Sigma_{(n,n')}^{Li^7}) \Phi(r,E) dr dE$$

 $\frac{F}{B} = \frac{fissile \text{ material generate rate}}{\text{fissile material consume rate}}$

MCORGS VERIFICATION

MCORGS HAS BEEN TESTED BY THE FOLLOWING PROBLEMS

- 1. OECD/NEA burnup credit calculation criticality benchmark phase I-B, 1996, ORNL-6901
- VVER-1000 LEU and MOX assembly computational benchmarks".NEA/NSC/DOC(2002), ISBN 92-64-18491-0
- 3. IAEA ADS benchmark results and analysis". IAEA ADS Benchmark , Madrid: TCM.1999:451-482.
- 4. It is also used to calculate and analysis the following hybrid system the ultra deep burnup hybrid model of Laser Inertial Confinement Fusion Fission Energy(LIFE)
- 5. Analysis the fluid Transmuter model of In-Zineraters.

OECD/NEA Burnup Credit Calculation Criticality Benchmark Phase I-B

Table 2. Operating history data for benchmark problem pin-cell calculation					Nuclei	MCORGS	Measurement	MCBURN	Calculation range
					value		of 21 sets		
			Boron	Boron	²³⁴ U	0.125	0.120	0.125	0.0903~0.144
Orenting	Denting	Developer	BOIOI	DOION	235U	3.378	3.54	3.307	2.934~3.716
Operating	Burntime	Downume	concentration	concentration	²³⁶ U	3.608	3.69	3.706	3.641~4.030
cycle	(days)	(days)	(ppm)	(% of cycle 1)	²³⁸ U	825.676	824.9	824.35	823.4~831.6
1	306.0	71.0	331.0	100.0	²³⁷ Np	0.464	0.468	0.493	0.423~0.593
	50010	71.0	55110	100.0	²³⁸ Pu	0.226	0.2688	0.257	0.166~0.281
2	381.7	83.1	469.7	141.9	²³⁹ Pu	4.042	4.357	4.207	3.659~4.902
3	466.0	85.0	504.1	152.3	²⁴⁰ Pu	2.325	2.543	2.539	2.180~2.661
	400.0	0510	204.1	102.0	²⁴¹ Pu	0.968	1.02	0.998	0.882~1.111
4	461.1	1870.0	492.5	148.8	²⁴² Pu	0.798	0.8401	0.780	0.596~0.910
					²⁴¹ Am	0.332	N/A	0.338	0.310~0.378
Table 2 Specific power for the three bandwark acces				²⁴³ Am	0.183	N/A	0.185	0.163~0.232	
	Specific Power				⁹⁵ Mo	0.830	N/A	0.838	0.809~0.874
					⁹⁹ Tc	0.898	N/A	0.885	0.845~0.986
(kW/kgU)				133Cs	1.270	1.240	1.280	0.972~1.286	
	-				135Cs	0.422	0.43	0.430	0.398~0.461
_	Case	A	Case B	Case C	¹⁴³ Nd	0.764	0.763	0.753	0.740~0.884
Operating	g (final bur	nup = ()	final burnup =	(final burnup =	¹⁴⁵ Nd	0.735	0.744	0.737	0.717~0.756
cycle	27.35 GWG	3/MTU) 37.	.12 GWd/MTU)	44.34 GWd/MTU)	¹⁴⁷ Sm	0.228	N/A	0.196	0.166~0.230
1	17.2	4	24.72	31.12	¹⁴⁹ Sm	0.00209	0.0047	0.00185	0.00184~0.0047
2	2 19.43 26.76		26.76 22.51	22.51	¹⁵⁰ Sm	0.325	0.361	0.321	0.273~0.398
2			20.70	32.31	¹⁵¹ Sm	0.00929	N/A	0.0112	0.00810~0.0168
3	17.0	4	22.84	26.20	¹⁵² Sm	0.123	0.121	0.128	0.108~0.159
	4 14.57 18.87		10.07	22.12	¹⁵³ Eu	0.140	0.148	0.141	0.121~0.160
4			10.0/	22.12	155GD	0.00533	N/A	0.00947	0.0034~0.0132
					-	-	-	-	-

VVER MOX-Gd Benchmark

Burnup	k _{or}	$k_{iq} - \overline{k_{iq}}$						
MWakgrim		MCU	TVS-M	WIMS8A	HELIOS	MULTICELL	MCCOOR	MCORGS
0	1.135	-0.002	0.000	0.000	0.002	0.000	0.001	0.001
1	1.1349	-0.001	0.002	0.000	0.005	0.001	0.002	0.001
2	1.1357	-0.003	0.000	0.000	0.004	0.002	0.002	0.000
3	1.137	-0.003	0.002	0.001	0.004	0.002	0.002	0.001
4	1.1373	-0.002	0.000	0.001	0.003	0.002	0.002	0.001
5	1.1385	-0.003	0.000	0.001	0.003	0.002	0.002	0.001
6	1.1401	-0.006	0.001	0.001	0.002	0.002	0.001	0.001
7	1.1413	-0.005	0.001	0.001	0.002	0.002	0.001	0.000
8	1.14	-0.005	0.002	0.001	0.003	0.001	0.002	0.004
9	1.1347	-0.006	0.000	0.000	0.003	0.002	0.002	0.000
10	1.1277	-0.005	0.001	0.000	0.004	0.001	0.002	0.002
11	1.1185	-0.006	0.001	0.000	0.004	0.002	0.002	0.000
12	1.1096	-0.005	0.000	0.000	0.004	0.002	0.002	0.003
13	1.1002	-0.004	0.001	0.000	0.004	0.002	0.002	0.001
14	1.0915	-0.004	0.001	0.000	0.004	0.002	0.002	0.000
15	1.0825	-0.003	0.000	0.000	0.004	0.002	0.002	0.000
20	1.0411	-0.003	0.001	0.001	0.003	0.002	0.002	0.002
25	1.0036	0.000	0.000	0.001	0.002	0.002	0.002	0.002
30	0.9689	0.003	0.001	0.002	0.001	0.003	0.002	0.004
35	0.9371	0.005	0.004	0.004	0.000	0.002	0.004	0.004
40	0.9065	0.006	0.003	0.004	0.002	0.003	0.004	0.003

IAEA ADS Benchmark

Numerical results of LIFE

Numerical results of In-Zinerater

3 Numerical results

1D design and optimization

- One dimensional design and optimization is firstly made to obtain maximum Tritium Breeding Ratio (TBR) and a moderate energy Multiplication (M).
- Two kinds of blanket configuration are compared.
 - 1. The tritium breeding zone is behind the fission zone

2. The fission zone and tritium zone are arranged alternatively.

- It is found the second scheme is better to obtain bigger TBR while in the first scheme more plutonium are produced.
- A 3D neutronics model of CFETR based on detailed CAD design is then used in the blanket conceptual research.

3D neutronics model (22.5°)

Blanket cross section in X-Z direction (MCNP)

Blanket cross section in X-Y direction (MCNP)

CFETR

CFETR Benchmark modeling (JMCT)

Under support of NATIONAL MAGNETIC CONFINEMENT FUSION ENERGY RESEARCH PROJECT, JMCT IS ALSO USED TO VERIGY THE CALCULATION

Blanket module details

Module 1

Module 11

JMCT-MCNP Verification at BOC

Cells in Blanket	19991 (5992)				
Cells in T-zone	861 (861)				
TBR	JMCT 1.268	MCNP 1.267			
TBR error(%)	0.079				
err in T-zones	cells	Tritiu contribution			
<1%	682 (79.3%)	1.108(87.35)			
1%-2%	106 (12.32%)	0.084(6.62%)			
2%-3%	27 (3%)	0.01(0.72%)			
3%-5%	18 (2.09%)	0.023(1.82%)			
>5%	28 (3. 25%)	0.043 (3.4%)			

Natural uranium in blanket:TBR>1.26

Spent fuel in blanket: TBR>1.29

LEU in blanket: TBR>1.37

4 Summary

- A hybird blanket concept which use natural uranium as fissile material and water as coolant is given is this work.
 - MCORGS is used to simulate the burnup Process in the hybrid blanket.
 - > JMCT is used to verify the TBR Calculation
- □ BOC: TBR= 1.26, M= 3.18, Keff=0.16
 - 12y later: TBR= 1.28, M= 4.05, Keff=0.23
- If spent fuel or LEU is used instead of natural uranium, better neutronics performance will be obtained.

Acknowledgement

THIS RESEARCH IS SPONSORED BY "NATIONAL MAGNETIC CONFINEMENT FUSION ENERGY RESEARCH PROJECT (2015GB108002)"

Thanks