

TensorKMC: Kinetic Monte Carlo Simulation of 50 Trillion Atoms Driven by Deep Learning on a New Generation of Sunway Supercomputer

Xin Chen

Institute of Applied Physics and Computational Mathematics Beijing, China

The presenter: Xin Chen

- Ph.D. degree in chemistry from Tsinghua University in 2018
- Assistant professor at the Institute of Applied Physics and Computational Mathematics, focusing on materials modeling and equation of state
- The core developer of TensorAlloy、 TensorMD and TensorKMC

Reactor pressure vessel

- Reactor pressure vessel (RPV) plays a critical role in safety of nuclear powerplant
- RPV is unsubstitutable
- RPV cylinder shell is the life-time limiting component for a nuclear reactor

RPV aging

- The shell, primarily Fe-based alloy, is constantly bombarded by high-energy particles
- Defects accumulated over time, voids, bubbles, dislocation loops or lines, etc, formed
- Atoms segregate or aggregate
- Radiation hardens materials, but also lowers ductility
 - Losing ductility may lead to catastrophic failure without warning

Atomic Kinetic Monte Carlo

- Experimentally invetigating radiation-induced aging is difficult
- Theoretical study is also a challenge:
 - Phenomenons occured atomic level, accurate atomic modeling is required
 - Timescale is extremely large, molecular dynamics is not applicable
- Atomic kinetic monte carlo (AKMC): a combination of atomic modeling with mesoscale simulation

Atomic Kinetic Monte Carlo

- Traditionally AKMC is a qualititive simulation method as it often uses simplified interaction models
- Massively-paralleled AKMC with highly accurate energetic approach is needed for realistic modeling

The new generation of Sunway

- Each SW26010pro many-core processor has 6 core groups (CGs)
- Each CG has 1 MPE, 8x8 CPEs, 16 GB main memory
- Each CPE has 256 kB high-speed manually controllable local device memory (LDM)

LAKIMOCA

- Developed by Électricité de France (EDF), owner of 58 power plants in France
- Capable of simulating long-term kinetics and atomic behaviors of dilute metal alloys
- Serial, empirical potentials, hundreds of thousands of atoms

Vincent et al., J. Nuc. Mater. 2006, 351, 88-99

OpenKMC

- Developed by Hong-Hui Shang and co-workers in 2019
- Can simulate up to hundreds of billions of atoms with empirical potentials
- Specially optimized for Sunway TaihuLight

Kun Li and Hong-Hui Shang et al. SC' 19. doi: 10. 1145/3295500.3356165

i-Pl

- i-Pi 2.0 is a universal force engine
- Neural network potential based AKMC simulates natural aging behavior of Al-6xxx alloys (~1500 atoms)

Jahn et al. Phys. Rev. M. 2021, 5, 053805 Kapil et al., Comp. Phys. Comm. 2018, 236, 214–223

TensorKMC

- TensorKMC is a massively parallel AKMC program integrated with highly accurate neural network potentials
 - TensorAlloy: an automatic atomistic neural network program for metals and alloys
 - Comput. Phys. Commun, 2020, 107057
 - Comput. Phys. Commun, 2021, 108132
 - OpenKMC: a KMC Design for Hundred-Billion-Atom Simulation Using Millions of Cores on Sunway TaihuLight
 - SC' 19. doi: 10. 1145/3295500.3356165

• Major contributions:

- Triple-encodings and vacancy cache mechanism for largescale AKMC simulation
- Extremely fast NNP implementation algorithms for many-core processor

Triple-Encodings

- Simulation domain of each process is large
- Vacancy concentration is extremely low: 0.0001%-0.01%
- Interatomic interaction has limited range, only atoms close to an active vacancy are "important"
- Hence, a large simulation domain can be decomposed to discrete vacancy systems

	АКМС			
Spatial	$nm - \mu m$ (10 ⁴ – 10 ⁷ atoms/proc)			
Time	μs - s			
Driven by	Energy			
Atoms	Always on lattice sites			

Illustration of domain decomposition

Triple-Encodings

- How to effectively represent these vacancies and atoms?
- Triple-Encodings: tabular arrays describing vacancy systems for BCC/FCC systems
 - 128 millions of atoms, 0.0008% vacancy concentration ightarrow 1024 vacancy systems
 - Large randomly accessed array \rightarrow small continous dense block

Vacancy cache and memory optimization

- Cache mechanism: only properties of atoms of vacancy systems need to be kept
 - Vacancy systems can be viewed as "big particles"
 - Update properties of a vacancy system only if it is close to a jump
 - OpenKMC stores properties of all atoms
- Compute the 1D index of a spatial position (i, j, k)
 - Applicable to BCC/FCC systems
 - OpenKMC uses a 3D array
- Overall memory cost reduces by ~66%

Atomic feature calculation

- The general NNP scheme: atomic positions \rightarrow atomic features \rightarrow atomic energy
- Atomic features are calculated with descriptor functions:
- In AKMC, interatomic distances are enumerable
- Tabular arrays can be used to compute features

$$f(r|p,q) = \sum_{j}^{N_{local}} \text{TABLE}(r, p, q)$$

	АКМС			
Spatial	nm - μm (10 ⁴ – 10 ⁷ atoms/proc)			
Time	μs - s			
Driven by	Energy			
Atoms	Always on lattice sites			

Atomic feature calculation

- A vacancy may jump to one of its N_f first nearest neighbors
 - BCC: $N_f = 8$
 - FCC: $N_f = 12$
- A total of $1 + N_f$ states should be computed each time
- Memory-bounded task:
 - $\#Ops = (1 + N_f) \times N_{region} \times N_{local} \times N_{features}$
- Memory speed and bandwidth of SW26010pro is limited

BCC

Atomic feature calculation

- A parallel CPEs-based feature operator
- Vacancy hopping simulation is moved to CPEs

Energy calculation

- The energy calculation is achieved by a multi-layer convolutional neural network
 - Each batch corresponds to a state
- SW officially provides a highly-optimized DNN library (SWDNN)
 - Requires massive data exchange between CPEs and the main memory
- The big-fusion strategy
 - Minimize memory access
 - Hide data exchange behind computation

SWDNN

The big-fusion

Energy calculation: the big-fusion strategy

- CPEs act as "normal" cores
- LDM act as distributed storage: NNP parameters are dispatched to CPEs
- Parameter sharing across CPEs is achieved by remote scratched memory access (RMA)

Energy calculation: the big-fusion strategy

the calculations flow on the Input to complete the kernel fusion, and at the same time hides RMA get the next layer filter in the current calculation

Energy calculation: the big-fusion strategy

The Roofline analysis

Layer	In-c	Out-c	Memory	Volume	Intensity
			(MB)	(Gflop)	(flop/B)
1	64	128	10	0.125	12.8
2	128	128	12	0.25	21.3
3	128	128	12	0.25	21.3
4	128	128	12	0.25	21.3
5	128	64	8	0.25	21.3
6	64	1	2.06	0.001	0.48
Original			56.06	1.01	18.44
Big-fusion			2.03	1.01	509.05

Batch size

The big-fusion performances

GEMM+Bias+ReLU

□ GEMM+Bias+ReLU+SIMD

- Fusion(GEMM+Bias+ReLU+SIMD): the SWDNN strategy
- **The Big-Fusion Strategy**

Serial performances

- Benchmark settings:
 - 128 millions of atoms, 1.34% Cu concentration, 0.0008% vacancy concentration, 100 ns simulation time
- X86:
 - AMD EPYC, libtensorflow_cc, serial atomic feature calculation
- SW:
 - SW26010pro, libtensorflow_cc + SWDNN, serial atomic feature calculation
- SW(opt):
 - SW26010pro, customized operators

Serial performances

TensorKMC gains significant boost with customized operators

Parallel performances

- Strong scaling: 1.92 trillions of atoms
- Weak scaling: 128 millions of atoms / CG, maximum 54 trillions of atoms
- Synchronization interval: 20 ns

Aging of Fe-Cu alloy

- 2.5 billions of atoms, 1.34% at. Cu, 0.0008% vacancy
- 1 second, 573K
- After a long-term evolution, considerable Cu cluster precipitations are observed while isolated Cu atoms are significantly reduced

Conclusion

- TensorKMC: deep learning driven massively parallel AKMC code
 - A successful integration of TensorAlloy and OpenKMC
 - Mesoscaling simulation on exscale machine
- The first reported micron-long kinetic simulation of 50 trillion atoms with ab initio accuracy

Papers

• Machine learning interaction potential

- 1. TensorAlloy: an automatic atomistic neural network program for alloys. *Comput. Phys. Commun.* 2020, 250, 107057
- 2. Machine learning enhanced empirical potentials for metals and alloys. *Comput. Phys. Commun.* 2021, 269, 108132

• Atomic Kinetics Monte Carlo

- 1. NNP-based: TensorKMC: kinetic Monte Carlo simulation of 50 trillions of atoms driven by deep learning on a new-generation of Sunway supercomputer. In The International Conference for High Performance Computing, Networking, Storage, And Analysis (SC'21). November 14-19, 2021. ACM St. Louis, MO, USA.
- 2. Empirical potential based: Redesigning OpenKMC for Multi-Component Trillion-Atom Simulations on the New Sunway Supercomputer. *IEEE Transactions on Parallel and Distributed Systems.* 2023, Just accepted.

Thanks for your attention