

# Алгоритмы и особенности программной реализации в пакете УРС-ОФ полуэмпирической модели широкодиапазонных уравнений состояния РОСА-МФИ

XVI «Забабахинские научные чтения» Численные методы, алгоритмы, программы и точные решения

<u>Данилов Артем Сергеевич</u>, Гордеев Д.Г., Шумилина О.Н., Арапов И.Н. РФЯЦ-ВНИИЭФ, г. Саров

# Полуэмпирическая модель широкодиапазонных уравнений состояния (УРС) РОСА-МФИ



представляет собой развитие ранее созданной модели <u>УРС РОСА-МИ<sup>[1,2]</sup></u> с описанием фазового перехода <u>жидкость-пар</u>. Модель дополнена алгоритмами, позволяющими описывать термодинамические свойства вещества при фазовом переходе <u>твердое тело-жидкость</u> (плавлении).

# Цели работы

- Разработать алгоритмы вычисления термодинамических функций (ТДФ) по модели РОСА-МФИ для входных переменных р-*T*, р-*E*, р-*P* для фаз твердого тела, жидкости (пара) и двухфазной области твердое тело-жидкость
- Реализовать разработанные алгоритмы в пакете УРС-ОФ<sup>[3,4]</sup> для расчета ТДФ на SIMD, MIMD и GPGPU-архитектурах

3. Гордеев Д.Г., Голубкова Е.Ф., Гударенко Л.Ф., Куделькин В.Г., Сапронова О.В. Современное состояние пакета программ УРС-ОФ для расчета термодинамических и механических свойств веществ [Электронный ресурс] // Труды международной конференции «XI Забабахинские научные чтения». – 2012. – Режим доступа: <u>http://www.vniitf.ru/images/zst/2012/s6/6-17.pdf</u>

<sup>1.</sup> Гордеев Д. Г., Гударенко Л. Ф., Каякин А. А., Куделькин В. Г. Модель уравнения состояния металлов с эффективным учетом ионизации. Уравнения состояния Та, W, Al, Be // Физика горения и взрыва. – 2013. – № 1. – С. 106-120.

<sup>2.</sup> Каякин А. А., Гударенко Л. Ф., Гордеев Д. Г. Уравнение состояния соединений изотопов лития с изотопами водорода // Физика горения и взрыва. – 2014. – Т. 50, № 5. – С. 109-122.

<sup>4.</sup> Гордеев Д.Г., Голубкова Е.Ф., Гударенко Л.Ф., Куделькин В.Г., Сапронова О.В. Современное состояние пакета программ УРС-ОФ для расчета термодинамических и механических свойств веществ // XII Международная конференция «Супервычисления и математическое моделирование»: сб. науч. тр./под. ред. Р.М. Шагалиева – Саров: ФГУП «РФЯЦ-ВНИИЭФ». – 2010. – С. 115-118.

Фазовая диаграмма произвольного вещества в координатах относительное сжатие-давление



– – – изотермы (без учета двухфазного состояния)
 ВСD – участок изотермы, реализующейся при равновесном фазовом переходе

3

РФЯЦ-ВНИИЭФ

### Двухфазный модуль пакета УРС-ОФ



Двухфазный модуль позволяет для заданного УРС вещества с использованием условий термического, механического и химического равновесия фаз вычислять термодинамические функции на границах и внутри двухфазных областей жидкость-пар и твердое тело-жидкость для входных переменных УРС плотность-температура (р-*T*), плотность-удельная внутренняя энергия (р-*E*), плотность-давление (р-*P*).



Фазовая диаграмма в координатах относительное сжатие-

4





### Требования к УРС, используемым совместно с двухфазным модулем



Алгоритмы двухфазного модуля не зависят от формы модели УРС. При этом УРС должны удовлетворять следующим требованиям:

- должны быть термодинамически согласованными, что обеспечивает строгое выполнение первого и второго законов термодинамики;
- должны позволять рассчитывать зависимости от плотности и температуры: давления  $P(\rho, T)$ , удельной внутренней энергии  $E(\rho, T)$ , энтропии  $S(\rho, T)$ ,  $(\partial P / \partial \rho)_{\tau}, (\partial P / \partial T)_{\rho}, (\partial E / \partial \rho)_{\tau}, (\partial E / \partial T)_{\rho};$
- для учета испарения рассчитанные по УРС изотермы должны иметь участки в виде петель Ван-дер-Ваальса при плотности меньше нормальной и температурах ниже критической;
- для учета плавления УРС должны иметь отдельные функциональные зависимости для описания жидкой и твердой фазы вещества.

Система уравнений для вычисления ТДФ на границе двухфазной области твердое тело-жидкость на этапе РНД

$$\begin{cases} P_{I}(\rho_{I},T) = P_{Z} \\ P_{s}(\rho_{s},T) = P_{Z} \\ \Phi_{I}(\rho_{I},T) = \Phi_{s}(\rho_{s},T) \end{cases}$$

где *P*<sub>*l*</sub>(ρ, *T*) – давление, вычисляемое по УРС жидкой фазы;

*P*<sub>s</sub>(ρ, *T*) – давление, вычисляемое по УРС твердой фазы;

 $\Phi_{I}(\rho,T) = E_{I}(\rho,T) - T \times S_{I}(\rho,T) + \frac{P_{I}(\rho,T)}{\rho}$  – потенциал Гиббса, вычисляемый по УРС жидкой фазы;  $\Phi_{s}(\rho,T) = E_{s}(\rho,T) - T \times S_{s}(\rho,T) + \frac{P_{s}(\rho,T)}{\rho}$  – потенциал Гиббса, вычисляемый по УРС твердой фазы;

*P*<sub>Z</sub> – задаваемый параметр системы.



Используемые аппроксимации зависимостей ТДФ на границах С

| Тип входных<br>переменных УРС                                                                       | ρ <b>-</b> Τ                                                                         | ρ- <b>Ρ</b>                                                                                                 | ρ- <b>Ε</b>                                                                                                                      |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Используемые<br>аппроксимации при<br>фазовом переходе<br>жидкость ( <i>I</i> )–пар ( <i>v</i> )     | ρ <sub>(</sub> ( <i>T</i> ), ρ <sub>ν</sub> ( <i>T</i> )                             | ρ <sub>Ι</sub> ( <i>P</i> ), ρ <sub>ν</sub> ( <i>P</i> ), <i>T</i> ( <i>P</i> )                             | <b>Ε</b> (ρ), <b>Ε</b> <sub>2ph</sub> (ρ, Τ), ρ <sub>l</sub> (Τ),<br>ρ <sub>v</sub> (Τ)                                          |
| Используемые<br>аппроксимации при<br>фазовом переходе<br>твердое тело (s)–<br>жидкость ( <i>l</i> ) | ρ <sub>Ι</sub> ( <i>T</i> ), ρ <sub>s</sub> ( <i>T</i> ), <i>T</i> (ρ <sub>s</sub> ) | ρ <sub>l</sub> ( <b>P</b> ), ρ <sub>s</sub> ( <b>P</b> ), <b>T</b> ( <b>P</b> ), <b>T</b> (ρ <sub>s</sub> ) | $\begin{split} E_{l}(\rho_{l}), \ E_{s}(\rho_{s}), \ E_{2ph}(\rho, T), \\ \rho_{l}(T), \ \rho_{s}(T), \ T(\rho_{s}) \end{split}$ |

# Уточнение значений ТДФ на границе двухфазной области относительно аппроксимаций на примере ФП твердое тело-жидкость



РФЯЦ-ВНИИЭФ

## Форма модели РОСА-МФИ





- Где *F* свободная энергия Гельмгольца;
  - *E<sub>x</sub>*(*ρ*) потенциальные составляющие удельной внутренней энергии;
  - *F<sub>p</sub>*(*ρ*,*T*) составляющие, учитывающие тепловое движение ядер (атомов);
  - *F*<sub>e</sub>(ρ,*T*) составляющие, учитывающие вклад термически возбужденных электронов;
  - *F<sub>f</sub>*(*ρ*,*T*) составляющие, учитывающие вклад излучения;
  - ∆S<sub>V</sub> характеризует изменение энтропии при плавлении (конфигурационная энтропия);

∆S<sub>N</sub> – разница энтропий, обусловленная разными формами тепловых ионных составляющих твердого тела и жидкости.

### Потенциальные составляющие РОСА-МФИ





### Составляющие, учитывающие тепловое движение ядер РОСА-МФИ



+  $(1-\alpha_D)\ln(1-e^{-\theta_E z(\delta_T,T)})],$ 

Твердое тело:

Параметр α<sub>D</sub> - определяет Дебаевский вклад, а (1- α<sub>D</sub>) -

Эйнштейновский вклад в термодинамические функции

Жидкость (пар) – соответствует модели УРС РОСА<sup>[5]</sup> :  $F_{pl}\left(\delta_{T},T\right) = -\frac{C_{V0}T}{q}\left(-\gamma_{\phi}\ln\frac{\delta_{T}}{\delta_{T}^{*}} + q\ln\frac{T}{\psi_{Pl}\left(\delta_{T}^{*}\right)} + (1-q)\ln\frac{\left(\psi_{Pl}\left(\delta_{T}\right) + T\right)}{\psi_{Pl}\left(\delta_{T}^{*}\right)}\right), \quad \left|F_{ps}\left(\delta_{T},T\right) = C_{V0}T\left[\alpha_{D}\left(\ln\left(1-e^{-\theta_{D}z\left(\delta_{T},T\right)}\right) - \frac{1}{3}D_{3}\left(\theta_{D}z\left(\delta_{T},T\right)\right)\right) + \frac{1}{3}D_{3}\left(\theta_{D}z\left(\delta_{T},T\right)\right)\right)\right] + \frac{1}{3}D_{3}\left(\theta_{D}z\left(\delta_{T},T\right)\right) + \frac{1}{3}D_{3}\left($ 

где  $\psi_{P}(\delta_{T})$  – функция, характеризующая потенциальный барьер, который нужно преодолеть атому, чтобы уйти из узла решетки;

 $\gamma_{\phi}$  –асимптотическое значение коэффициента Грюнайзена вещества при  $T \rightarrow \infty$ ;

C<sub>V0</sub> –параметр, имеющий смысл теплоемкости решетки одного грамма вещества;

 $\delta_T^* = 1, \psi_P(\delta_T)$  – нормировочные значения удельного сжатия и температуры.

ещества;  

$$\delta_{T}^{*}=1, \psi_{P}(\delta_{T}^{*})$$
 – нормировочные значения удельного сжатия и температуры.  
 $\frac{d\psi_{P}(\delta_{T})}{\psi_{P}(\delta_{T})} = \frac{1}{q-1} \left(q\Gamma_{p/0}(\delta_{T}) - \gamma_{\Phi}\right) \frac{d\delta_{T}}{\delta_{T}}$   
 $q = C_{v0} / \frac{3R}{2A}$  – множитель, обеспечивающий выполнение асимптотики идеального  
 $q = C_{v0} / \frac{3R}{2A}$  газа ионов  
 $2.5$   
 $1.5$   
 $1.5$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   
 $1.6$   

5. Глушак Б.Л., Гударенко Л.Ф., Стяжкин Ю.М. Полуэмпирическое уравнение состояния металлов с переменной теплоёмкостью ядер и электронов 12 // Вопросы атомной науки и техники. – Сер. Математическое моделирование физических процессов. – 1991. – Вып. 2. – С. 57-62.

### Расчет ТДФ по входным переменным р-Е, р-Р

Начальное приближение для УРС жидкости (и пара):  $T = min(T_3, T_1)$ .

РФЯЦ-ВНИИЭФ

Начальное приближение для УРС твердого тела:  $T=\min(\max(T_3, T_2), T_1)$ .

- T<sub>1</sub> дает близкое к искомому значение при высоких температурах, когда вклад излучения в тепловую энергию (давление) преобладает;

- Т<sub>2</sub> дает близкое к искомому значение при относительно низких температурах, когда тепловой вклад ионов учитывается только по теории Дебая, тепловой вклад электронов соответствует полностью вырожденному электронному газу;
- T<sub>3</sub> используется в промежуточной области температур, когда можно пренебречь приближением Дебая и вырождением электронов.



### Программная реализация разработанных алгоритмов в пакете УРС-ОФ





### Правила обеспечивают:

- единые интерфейсы взаимодействия прикладных программ с объектами пакета УРС-ОФ на стадиях расчета начальных данных (РНД) и решения задачи,
- использование расчетных модулей УРС на вычислителях MIMD, SIMD и GPGPUархитектур,
- использование единых структур данных для обмена информацией с прикладными программами (в невекторизованном режиме вычислений (MIMD) - структура переменных, в векторизованном режиме (SIMD) - структура указателей на массивы исходных данных и результатов, хранящиеся в методике<sup>[6]</sup>).

6. Гордеев Д.Г., Жильникова Н.Н., Кидямкина Д.Н., Куделькин В.Г., Куликова М.В., Шумилина О.Н. Библиотека программ «УРС-ОФ» расчета свойств веществ, адаптированная для вычислительных систем с возможностью параллельных и векторизованных вычислений // Вопросы атомной науки и техники. Серия: Математическое моделирование физических процессов. – 2022. – Вып. 1. – С. 27-39.



### Структура массива параметров модели



# Мультиархитектурный эталонный файл (МЭФ) модели РОСА-МФИ и органования составля и составля в составля и с



МЭФ – текстовый файл, содержащий фрагменты программного кода, объединённые управляющими конструкциями – тегами.

Список структурных разделов :

- РНД
- Блок комментариев
- Блок включений
- Блок объявления переменных
- Блок инициализации
- Наборы фрагментов
- Блоки завершающих вычислений

#### Список архитектурных тегов для перевода текста:

- Тег явного указания архитектуры
- Тег-признак векторизованного цикла

Специальные теги для записи данных в обменные структуры пакета УРС-ОФ

Теги пользовательских блоков, для вставки текста в любое место программы.

### Некоторые элементы структуры МЭФ:



Архитектурный тег <arch= SCAL GPU> real(8) :: init Ti, init Te, init Pi, init Pe, init Pf, init Ei, init Ee, init Ef, & init DPITI, init DEITI, init DPeTe, init DEeTe, init DPfTf, init DEfTf, init DPiDR, init DEiDR, & init DPeDR, init DEfDR, init DPxDR, init Ex, init DPDT, init DEDT, init DEeDR !</arch= SCAL GPU> Структурный блок: объявление переменных для векторизованных вычислений <OF DECLARE> integer(4), dimension(1:size) :: ursData ko integer(4), dimension(1:4\*size) :: ursData ko war logical, dimension(1:size) :: ursData matter break real(8), dimension(1:size) :: ursData\_P,ursData\_E,ursData\_dpdt,ursData\_dedt,ursData\_dPdr,ursData\_dedr real (8), dimension (1: size) :: ursData dper, ursData depr, ursData Pt, ursData Et, ursData Px, ursData Ex real(8), dimension(1:size) :: ursData Ro, ursData Zn , ursData dPete, ursData dPedr, ursData dpxdr real (8), dimension (1:size) :: ursData Te, ursData Ti, ursData T, ursData Pe, ursData Pi, ursData Pf, ursData Ee, ursData Ei, ursData Ef real(8), dimension(1:size) :: ursData dPidr , ursData deete, ursData deidr real(8), dimension(1:size) :: ursData s, ursData\_tpl, ursData\_alpha real(8), dimension(1:size) :: ursData dPiti,ursData deiti, ursData dEfdr, ursData deedr, ursData dPftf, ursData dEftf !</OF DECLARE> Соглашения о единых названиях служебных структур и FRAG ursData Pe ! INPUT ursData Px, dwEd, Fun00 3T, Fun00 3P, Fun00 3E переменных ассоциированных с их полями ! OUTPUT ursData Pe ВЫЧИСЛЕНИЕ РЕ (ЭЛЕКТРОН. СОСТАВЛЯЮЩАЯ) ursData Zn 🔸 (c2 3\*Ye\*Ae-dYed\*Ce) Pe1 = B(IB5-1)\*ursData Te\*ursData Zn azPet = ursData Ro\*Pel ursData Pe + ursData PX+azPet-Px00 EOF ursData Pe FRAG ZN ! INPUT ursData Pe ! OUTPUT ursData Zn WRITE TO STRUCT FROM: ursData Zn()/c2 3 TO:ursData%Zn TYPE:REAL Организации копирования значений локальных EOF 2N переменных

# МЭФ-препроцессор для генерации программ пакета УРС-ОФ 💽 РФЯЦ-ВНИИЭФ



# Пример работы МЭФ-препроцессора





#### Порядок работы программы расчета ТДФ по модели РОСА-МФИ (U398) в невекторизованном режиме





20

# Порядок работы программы U398 в векторизованном режиме 🥰 вычислений ТДФ



РФЯЦ-ВНИИЭФ

### Порядок работы программы U398 на графических ускорителях





# Сравнительные оценки затрат времени от оптимизации с учетом архитектуры вычислителей



Расчеты проводились на сервере программно-аппаратного полигона НЦФМ. **CPU**: Intel Xeon Gold 6132; **GPU**: NVIDIA Tesla V100 на порту NVLINK; **regSizeOF** = 8; (256,1,1) – заданный размер трехмерного GPU-блока **Сетка**: 10<sup>6</sup> точек.



| U398F029<br>(медь)                                         | ρ- <b>Τ</b> | ρ- <b>Ε</b> | ρ- <b>Ρ</b> |
|------------------------------------------------------------|-------------|-------------|-------------|
| t <sub>scal</sub> /t <sub>vec1</sub>                       | 3.45        | 4.13        | 4.52        |
| t <sub>vec28</sub> /t <sub>GPU</sub>                       | 3           | 4           | 2.4         |
| t <sub>vec28</sub> /(t <sub>GPU</sub> +t <sub>mcpy</sub> ) | 0.2         | 0.3         | 0.2         |

t<sub>scal</sub> – время расчета на CPU в невекторизованном режиме;
 t<sub>vec1</sub> – время расчета на CPU в векторизованном режиме,
 1 ореnMP-нить;

t<sub>vec28</sub> – время расчета на CPU в векторизованном режиме, 28 openMP-нитей;

t<sub>GPU</sub> – время расчета на GPU;

t<sub>тсру</sub> – время копирования данных с СРU на GPU и обратно;

#### Сравнение зависимостей температуры от давления на линии плавления и ударной адиабате меди, вычисленных по УРС РОСА-МИ и РОСА-МФИ



Errandonea D. // Phys. Rev. B. – 2013. – Vol. 87.
 Errandonea D. // J. of Appl. Phys. – 2010. – Vol. 108.
 Brand H. et. al. // High Pressure Research – 2006. – Vol. 26.
 Akella J. et. al. // J. of Geophysical Research – 1971. – Vol. 76.
 Japel S. et. al. // Phys. Rev. Lett. – 2005. – Vol. 95.
 Tan H. et. al. // Appl. Phys. Lett. – 2005. – Vol. 87.
 Vočadlo L. et. al. // J. Chem. Phys. – 2004. – Vol. 120.

РФЯЦ-ВНИИЭФ

# Сравнение зависимостей температуры меди от плотности на изобарах P=10<sup>-4</sup> ГПа и P=0.3 ГПа, вычисленных по УРС РОСА-МИ и РОСА-МФИ



1. Зиновьев В.Е. Теплофизические свойства металлов при высоких температурах. – 1989. – 384 с.

2. Чиркин В.С. Теплофизические свойства материалов ядерной техники. – 1968. – 484 с.

3. Gathers G.R. // Int. J. of Thermophys. – 1983. – Vol. 4.

РФЯЦ-ВНИИЭФ



### СПАСИБО ЗА ВНИМАНИЕ