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1. Research background
» The practical application of compressible multi-medium problems

g

Jet armour piercing

T

Supercavitating torpedo Propeller cavitation

Figure 1.1 The practical application of compressible multi-medium problems.



% Immiscible interface:
level set, front tracking and so on

v Two different mediums:
different EOS

% Control equations:
Euler equations

medium 1 medium 2

Interface

Figure 1.2 the model for multi-medium fluid flows



2. Ghost fluid method (GFM)
» The main idea of GFM

By defining ghost fluid regions and ghost fluid states, a multi-medium problem can
be decoupled into several single-medium problems, which can be solved seperately.

The real fluid region i The real fluid region
of medium 1 Q/ () of medium 2 ) (t )
The ghost fluid region
/ of medium 1 Q(t)
The ghost fluid region /

of medium 2 Q(¢) ~— Interface F(t)

Figure 2.1 The main idea of GFM.



» The origin and development of GFM
Different GFM differ in the way how the ghost fluid states are defined.

% Define ghost fluid states by extrapolation from the real fluid regions

O (OGFM) Fedkiw R P, Aslam T , Merriman B , et al. A Non-oscillatory Eulerian Approach to Interfaces in
Multimaterial Flows (the Ghost Fluid Method)[J]. Journal of Computational Physics, 1999, 152(2):457-492.

O (GWGFM) Fedkiw R P . Coupling an Eulerian Fluid Calculation to a Lagrangian Solid Calculation with the Ghost
Fluid Method[J]. Journal of Computational Physics, 2002, 175(1):200-224.

% Define ghost fluid states by a local double-medium Riemann problem

O (MGFM)

(1) LiuT G, Khoo B C, Yeo K S . Ghost fluid method for strong shock impacting on material interface[J]. Journal of
Computational Physics, 2003.

(2) LiuT G, Khoo B C, Wang C W . The ghost fluid method for compressible gas-water simulation[J]. Journal of

Computational Physics, 2005, 204(1):193-221.

O (RGFM) Wang CW ,LiuT G, Khoo B C. A Real Ghost Fluid Method for the Simulation of Multimedium
Compressible Flow[J]. Siam Journal on Scientific Computing, 2006, 28(1):278-302.

O (PGFM) XulL, Feng CL, Liu T G. Practical techniques in ghost fluid method for compressible multi-medium flows
[J]. Commun. Comput. Phys., 2016, 20:619-659.

O (IGFM) Hu XY, Khoo B C. An interface interaction method for compressible multifluids[J]. Journal of
Computational Physics, 2004, 198(1):35-64.



3. One-dimensional compressible multi-medium problem

> Mathematical model

The source term
/

ou | oF (U) =|H(x,U),| for x € (a,b), t >0,
Ot Ox

B Ul(x,O), if x e (a,xg),
U(x,O) - {Uz (x,O), if x e (xg,b), (3.1)
. {el (,O,p), if x e (a,xF (t)),

B 62(,0,19), if x e (xr(t)ab)'

Let the interface be T'(¢): x = x..(¢).
Denote I'" = F(tn ), n=0,12,--,
The EOS of medium Jis e=e¢,(p,p), J=1,2.

t
A
|
medium 1 medium 2
e=¢(p,p) e=e,(p, p)
Interface F(t )‘ ¥ = (I )
R 1y ™

The initial location
of the interface

Figure 3.1 The mathematical model for one-dimensional
compressible multi-medium problem.



» Riemann problem (RP) -based GFM in 1D

A local double - medium RP 1s established at the interface:

The source term is zero
) e s
X

| s i 3.2
U(x,tn):{Ul’ if x < xp, e_{el(p,p), 1fx<xr(t), (3.2)

U,, if x> xg, B ez(p,p), ifx>xr(t).

where the associated vector of primitive

variables for the vector of conserved variable

medium 1 T medium 2
U, isW,, ] =12. & & o—1l o *—>x
Assuming that the interface x” € [x,x.,,] '~ . i1 I bl s
" n Figure 3.2 The choice for the initial data of the local
hen ch =W =W.,. :
then chosellV, := Wi, W, =W.., double-medium problem (3.2).

The initial data are linearly distributed



The intermediate states are
also constantly distributed

medium 1
Interface
e=ée (,0 > P )
As shown 1n Picture 3.3, sofve the intermediate states i medium 2
of the local double - medium problem (3.2), rarefaction e=e,(p.p)
e
VV}*Z(pJ*,u*,p*)T, I=1.2. AE hock
W " e shoc
14 2% -+t Wz
Define the fluid states in the ghost fluid regions and : o = X
the real fluid regions near the interface of medium JasU |, s
where U, is the vector of conserved variables for the Figure 3.3 The wave structure of local double

-medium GRP (3.2) .

vector of primitive variables ..



v" The disadvantages of the RP-based GFM in 1D

There will be pressure mismatch errors near the interface, and this kind of errors will
accumulated over time.

Assuming that p(xl’f -0,¢, ) = p(x’r1 +0,7, ), consider the pressure mismatcherrors at the interface

during the time step [tn , tn+11 By Taylor expansion respect to time t, we have

D Dp o©
p(x;+1 +0, th) p(xr +0,¢, )+ AtEIZ(xF +0,¢, )+ O(Atz) where D]f) 512 U, = x.(¢).
Then we have [ (p) = plxi™ +0,1,., ) plxi — 0,1 )= [gj (0., 22 oz - )}At ~o(ar?)
For the ghost fluid states defined by the RP - based GFM, 1n general we have 11))12 ( +0,¢ ) op (x -0, tn)
Especially for radially symmetric flows, we have%lz + pc’ ZZ =— mx_ : pc’u. As Z—x(xr +0,¢ )— a_x (x -0,¢, ) =
then%lj(xl’i + O,tn)—%(xl’i —O,tn)z —mx—;lu*[yz(p* + pfo)—yl(p* +ij) # 0, 1.e.

Ex(p)=0(A1), Ew(P)=2 Ex(p)=
The cause of the pressure mismatch errors: the spatial derivatives of the ghost fluid states defined

by the RP based GFM are zero, which can not reflect the effects of the source terms in the equations.
Therefore they can not maintain the continuity of the material derivatives of pressure.
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> Generalized Riemann problem (GRP) -based GFM in 1D

Establish a local double - medium GRP at the interface:

__—> The source term of (3.1)
oy + 8F(U) =H(x,U), fort>t ,x¢ (xl’f —0, X +5),
19 0 "
¢ & (3.3)

U(Xt )_ U1(x), ifx<xllf, o= el(p,p), ifx<xr(t),
b )= U,(x), if x>x!, e,(p, p) if x> x.(¢)

where U, (x)is the vector of conserved variables for the the vector of primitive variables

W, +(x—X, W/, J =12. Assuming that the interface x" € [x,,x,,,] then chose

X = XXy = X0

ow ' ow ' The primitive variables
and Wy =W_, Wi= (—j , Wy =W, W, = (—j . |-— in the initial data are
ox )., ox )., . L
: : linearly distributed
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As shown in Figure 3.4, firstly, choose the following (3.4)as the initial data
of the associated RP of the local double - medium GRP (3.3),

U<x,rn>={U2,

where the vector of primitive variables associated with the vector of conserved

U, ifx<xl, (3.4)

if x> xp,

4

» J=1,2, to obtain the intermediate states

(3.5)
-medium GRP (3.3) to

variablesU, 1s W, + (xﬁ — X,

~

VVJ* = (5]*71/7*717*)T’ J = 192
Then choose W}, J =1,2, as the initial data of the dou

obtain the spatial derivatives of the intermediate states

T
(2.8
Ox ) \ OX ) \ OX )}

medium 1

medium 2

e:el(p,f) Interface e=e,(p,p)

rarefaction

\ O\
X \
NN

U—-C

\\ \
N\

W+

shock

\
Wl i (x — X )er /‘—‘“\ — Wz * (x — X, ,)Iiyzr
[ A
| AT .
W+ (-2 W

(3.6) Figure 3.4 The wave structure of local double

-medium GRP (3.3) .
——— ' The primitive variables in the intermediate

states are linearly distributed in computation

Define the fluid states in the ghost fluid region and the real fluid region near the interface of medium J as

~

W, +

n !
(x — Xp )WJ*,

J =1,2. The spatial derivatives of the fluid states in these nodes are defined as W},, J=1,2.
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The spatial derivatives of the intermediate states (3.6) of the double-medium GRP (3.3) :

We establish the equation for the material derivatives of pressure and velocity for each
medium, and then according to the continuity of the material derivatives of pressure and velocity
across the interface, i.e.,

(@j =(@j A(@j, (@j =(@) A(@j, where D/ Dt =0/ 0t +ud/ ox.
D). \ D)2\ D) \pe).  \pe )=\ Dr ).

combine them together to obtain

D D
a, = +b, =P =d,,
) \Dt ). "\ D1).
D D
a| =] +b| L| =4,
Dt ). Dt ).

\

where the effects of the source H(x,U ) are contained in the coefficients d, and d,. Then
we can obtain the spatial derivatives of pressure and velocity by combining the 1D Euler
equations.

The spatial derivatives of density for each medium are obtained respectively.



v The advatages of the GRP-based GFM in 1D

7 Eliminate the pressure mismatch errors, even for long time simulation.

The ghost fluid states defined by the GRP - based GFM can guarantee that
Dp

E(xl’f —O,tn)z%f(xl’f +O,tn).

Then during the time step [¢,,7,, ], the pressure mismatch errors at the interface are
n n+l n+l
EGrp (p) = p(xr+ +0, tn+l)_ p(Xr+ -0, tn+l)

= [% (xl'f + O,tn)— %]Z(xl'f —-0,¢, )}At + O(Atz)

= O(At2 ),
during the whole computation time [O, T ], the pressure mismatch errors at the interface are
EGrp = ZEém (p) = O(At)

14



7 Improve the computation accuracy
Reason 1:
The initial data of the associated RP of the local double - medium (3.3) is

~

Ul ) =12
U,, if x>xg,

where the vector of primitive variables associated with the vector of conserved variables U,

!

s W, + (xﬁ —x, W,, J=1,2, the computation accuracy is second order.
The initial data of the local double - medium RP (3.2) is
U, 1f x<x,
U (x, t, ) =< '
U,, if x>x{,
where the vector of primitive variables associated with the vector of conserved variables U,

i1s W,, J=1,2, the computation accuracy is first order.

Reason 2:
The ghost fluid states defined by the GRP - based GFM are linearly distributed, the spatial
derivatives of which are notzero; while the ghost fluid states defined by the RP - based GFM

are constantly distributed, the spatial derivatives of which are zero. .



v Numerical results in 1D

Example: Underwater explosion of radial symmetric flow.

The source term of the radial symmetric flow is

H(x,U)=—m—_1(pu,pu2,u(pE+p))[, x>0,
X

where x is the radial coordinate, m = 2 for cylindrical symmetrical flows,
and m = 3 for spherical symmetrical flows.
The underwater radial symmetrical explosion is as shown in Figure 3.5,

where gas 1s inside, and water 1s outside.

p+7/Jpoo,J
(I_VJ),O

The EOS of both mediums are represented as e =

The 1nitial data are
(01215 P 710 2,1 )=(1.27,0.0,8290.91,1.4,0.0), x < (0,0.401),
(0251135 P22 722 1. )= (1.0,0.0,1.0,7.0,3000.0), x €(0.401,12.0).

Gas Water

0.401

Figure 3.5 Underwater explosion of
radial symmetric flow.
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Figure3.6 Underwater spherical symmetrical explositon (m = 3).

The fineness of the mesh is 1/500, the computation timeis ¢ = 0.07.
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Figure3.7 Underwater cylindrical symmetrical explositon (m = 2).

The fineness of the mesh 1s 1/500, the computation timeis ¢ = 0.068.
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4. Two-dimensional compressible multi-medium problem

> Mathematical model

ouU | oF (U) . oG(U)
ot Ox oy

U(x Y 0): Ul(x,y,O), if (x,y)eQI“O,
UL (x,0,0), if (x, ) € 50,

The Interface is T'(¢): ¢(x, y,1) = 0, where ¢ is
the level - set function.The real fluid region of
medium J is denoted as Q/(¢), and

Q(t): p(x,y,6)<0, Qi(t): p(x, y,t)>0.
Denote I'" =T(¢,), Q" =Q!(¢,), Q" =Q.(¢,)

The EOS of medium Jise =g, (p,p), J=12.

=0, for (x,y)eQ,t>O,

medmum 1 '| medium 2

a— 31(/)}}?) III"l E’:eg(prp)

/.
i

Interface F(r) : l'x‘__ fp(x, v, z‘) =1}

Figure 4.1 The mathematical model for two
-dimensional multi-medium problem. 5



ou | oF (U) N 0G(U)

The two-dimensional Euler equations has Ot Ox oy
Galilean invariance, so that the transformed II
equation will have a source term associated oU OF ((} ) 5g(U )

. e oG\U ) + +
with the tangential direction - o when Ot o0& on
we transform the equations from the coordinate ﬁ
system (x, y) to the coordinte system (5 ) 77) : oU o F( 7 ) oGlU
+ =|-




» Riemann problem (RP) -based GFM in 2D

Search the nodes which are less than 1.5/4 away from the interface, and then save

them into two sets respectively,
0! ={PeQ)
where / = min(Ax, Ay ).

d(P,T,)<1.50}, T=12,

medium 1

Figure 4.2 Search for the nodes near interfaces in real fluid regions.
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Establish a local double - medium RP along the normal direction of the interface I'" for V P € Q"

Assuming the vertical point B as the origin,

the normal direction N = (nx, n, ) as the £ —axis,
the tangential direction 7" = (tx, , ) as the 7 — axis,
Establish a local coordinate system.
Choose two points on both sides of the vertical
point B, satisfying that
d(P,T")=d(P,P)=h, T=12.
The fluid states at P, ,1.e.,

W, = (p(P e, (B ), (P ). p(B)) T=1.2.
can be obtained by bilinear interpolation from the

Figure 4.3 Establish a local coodinate system
along the tangential and normal directions.
fluid states at the nodes surounding P,.



Establish a local double - medium RP along the normal direction of the interface I'” for VP € Q' :

The source term is zero

/
aU‘f + aF(U(’Z) = 0’ for ¢t > l‘n,f = (_ 595)9
ot oG

U (ea)= Ve TE6<0 _[alp.p) if(En)eilo)
E\D2%n ng,z) lfé > O, ez(p,p), 1f (é:,n)e Q;(t)

where the vector of primitive variables associated with the vector of conserved variables U, | (&,17)is

(4.2)

Wf,] = (p(i)J)9ux(})J)nx + Z/ly(})J)ny’p(})J))’ J = 192

\

The initial data are constantly distributed
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The intermediate states are also constantly distributed
As shown in Figure4.4, solve the intermedigafe states

of the local double - medium RP (4.2), jﬁej‘(‘*‘pmpl) interface
= ¢ (p.
W T = (pJ*,u *,p*)T’ J — 1,2 (43) \ i :
2 - rarefaction | s medn(&m 2)
Since P € O], modify thefluid statesat P by makinguse \ P
wne \ /
of the intermediat states (4.3) associated with medium J, S~ \\‘ - IV _shock
SN (e ute
W(P):=(pyu,uzen, +1, (PY uzn, +u, (P, p.J,  (44) /A= Ver _,
whereu, (P)=u_(P), +u , (P) , 18 the original tangential .
Figure 4.4 The wave structure of local double

velocityof P. -medium RP (4.1) .

Extending the modified fluid states in the real fluid regions near the interface to the ghost fluid regions
(i.e., VPeQ/, J= I,Z)by solving the Eikonal equation
I.£n-VI=0

iteratively.
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v' The disadvantages of the RP-based GFM in 2D

@'The effects of the source term associated with the tangential direction can not
be reflected.

@ There will be mismatch errors near the interface, since the continuity of
the material derivatives along the normal direction of pressure and normal
velocity can not be maintained.

@ The numerical results are not very well, 1f we obtain the initial data by
bilinear interpolation.

7 The numerical efficient 1s very low, 1f we extend the ghost fluid states by
solving the Eikonal equation iteratively, since it needs to traverse the nodes in
the ghost fluid regions for 20 to 30 times per time step.

25



» The generalized Riemann problem (GRP) -based GFM

The source term associated with the tangential direction

Establish a local double- mediy@l@ along the normal direction of the interfacefor VP € Q"
oy + 6F(U) = _8G—(U)’ fort > tn,(é,n)e (— 0, 5)>< (— 0, 5),
ot o0& on

(g f):{UI(M)’ if§<0ne(=6.6) _le(p.p) if (£7)eQ(r) (4.5)
P UL itE>0ne(-8,8) e.(p. p) if (E1)e (r)

where the vector of primitive variablesassociated with the vector of conserved variablesU(&,7)is

(e -wEscon) e S scnyen O iy 1-12
3 on

\

The primitive variables in the intial data are linearly distributed
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yjj_[ - . [ \o

1 1 1 1 = X

=1 Xip Xjg1 X2

Figure 4.5 Data template for distance
weighted least squares fitting.

yjH-l - . . P?J/o ° \
yjj+2 - . . . .

As shown in Figure 4.5, make use of the nodes in the real
fluid region of medium J which are two circles around P,
to obtain the fluid states at P, by distance weighted least

squares fitting, linearly distributed

_\OW _ oW
W(PJ;xﬂy)_i_(x_xJ) P ( J;xﬂy)+(x_yJ) ( J;an/)a
X oy

where (X,, 7, )is the coordinate of P, J=1,2.
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As shown in Figure 4.6, firstly, choose the following (4.5) 4.6
as the initial data of the associated RP of the local double -
medium GRP (4.4), 4.5

. medium 1 S o
U (5 ; ): Ul,g’ 1f§<0, (4.6) | é':el(p:f) . g:ez(p,p)
ACELY U, . if £>0, rarefaction A | shfock
o . . \\\ \ o u, +c
where the vector of primitive variables associated with the \ ‘-\\ Wy + é’( Y ] ; 3
vector of conserved variablesU ;. is W, (PJ; cf,n), J=12, \\\ \ - aw.
| f:\;c:(: W5,2*+§( 55}
to obtain the intermediate states W, . = (pj*,u 25 p*)r, J=12, B ol ( o, ] &\ : o +§ ( oW ]
ch,J* = (PJ*»”é*’”n (PJ )» P*)ra J=1.2. N - si;’""\ # H— £ 7 dha
0
ow ow [ \
Then choose (—j(PJ; 5,77), [—](PJ; 5,77), J =12, asthe W, Wes
05 on 4.5

Figure 4.6 The wave structure of local double-medium

initial data of the local double - medium GRP (4.4), to obtain RP (4.5) .

the spatial derivatives along the normal direction of the interface : :
The intermediate states are also

T
0 0 linearly distributed in computation
J* J* J* J* I*

o oc) .\ ag ) . \ag )\ og

28



First, modify the fluid states at P by making use of the intermediate states of the associated RP
of the local double - medium GRP (4.5) as (4.4).
Then modify the spatial derivatives along the normal direction of the fluid states at P by the

slopes of the intermediate states of the local double - medium GRP (4.5).

ow ow
——\Px )= —| (¥, —\2x, ),

oW o o
(x,5)

—P,, = — —Paa t?
ay(xy) o ). m+an(xyh

where W(x,y) = (p,uégnx +ut un, + unty,p).

nx?




Extend the fluid states and the spatial derivatives of them at VP € Q; to the

ghost fluid region of medium J by linear and constant extrapolation, J=1,2.

Nz‘Z—Z‘(G), d(G.T")~ p(G), |GP|=sign(d(G.T")p0.750+d(G.T")
p(G)= p(P)+[GPIVp(P)-N,  p(G)= p(P)+GEVR(P)- N,
u.(G)=u.(P)+|GP|Vu.(P)-N, u,(G)=u,(P)+|GP|Vu,(P) N,
ux(G)zuf(G)nx+u( )., (G) uég(G) y+un(G)ty.
TO=20p), TH6)= )

Figure 4.7 Extension by linear and
constant extrapolation.



The spatial derivatives of the intermediate states (4.7) of the double-medium GRP (4.5) :

Firstly, consider the effects along the normal direction, secondly, consider the effects along the tangential direction, finally,
combined with two-dimensional Euler equations, by making use of the derivatives of each primitive variables with respect to
time and tangential directions, we can obtain the derivatives of each primitive variables with respect to normal direction.

Along the normal direction, establish an equation for the material derivatives along the normal direction of normal
velocity and pressure. According to the continuity of them across the interface respectively, i.e.,

Dug) _(Dug| ofDug)  (Dp) _(Dp) *(Dp
Dt ) \Dt) \Dt) \Dt), \Dt), \Dt)

D 0 . o o . .
where =, = = +u, = 1s the material derivatives along the normal direction, combining the two equations, we have
4 4
3 B
a, Tg + bl Tp = dl’
Dt | '\ Dt ),
9 ~ ~
Du D
a| =< | +b| 2L | =4,
Dt |\ Dt),

Along the tangential direction, we obtain the effects along the tangential direction by comparing the difference of the
one-dimensional and two-dimensional Euler equations.



v The advatages of the GRP-based GFM in 2D

7 Reflect the effects of the source term associated with the tangential direction.
Since the two-dimensional Euler equations have Galilean invariance under

orthogonal coordinate transformation, there will be a source term associated with the
tangential terms in the transformed equations in the local double-medium problem at
the interface. However, the effects of this source term can not be reflected by the
intermediate states of RP, but can be reflected by the intermediate states of GRP, as
the spatial derivatives of the latter are not zero, but the spatial derivatives of the
former are zero.

7 Eliminate the mismatch errors near the interface.

The ghost fluid states defined by the GRP-based GFM can maintain the continuity
of the material derivatives along the normal direction of the normal velocity and
pressure across the interface,

~

e p.~0)=2(p. v0) 22(p. ~0)-

Dt " Dt (PF” ’ O)

SIS
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7@ Improve the method of choosing the initial data of the local double-medium problem.

We obtain the linear distributed initial data by distance weighted least square fitting,
and make use of the fluid states at the nodes which are located in the real fluid region
and two circles around the point to chose the initial data. Compared with chosing the
initial data by bilinear interpolation, the numerical simulation effects are improved
substantially.

7 Improve the numerical efficiency of extending the ghost fluid states.

We extend the ghost fluid states by linear and constant extrapolation. Compared
with extending the ghost fluid states by solving the Eikonal equation iteratively, the
numerical efficiency of extending the ghost fluid states are increased, since the former
needs to traverse the nodes in the ghost fluid regions for 20 to 30 times per time step,
while the latter only needs to traverse the nodes in the ghost fluid regions once per time
step.

33



v Numerical results in 2D

In the numerical tests in 2D, we
will compare the numerical results
of the four methods in Chart 4.2.
The EOS of the mediums 1n this
section can be written in (4.8)

uniformly,

o= P,
1 y)p’
For each medium, the coefficients
in EOS (4.8) are listed in Chart 4.1.

(4.8)

medium y

Chart 4.1 The coefficients

Peo

water 70 | 3309
gas 1.4 0
helium | 1.648 0
SE6 1.093 0

in the stiffen gas EOS (4.6).

The choice for the mitial data of

The way to extend

The velocity used to update

the double-medium problem TieyOLRE the ghost fluid states | the level-set function
Method (I) Bilinear interpolation RP Solvu.lg ﬂ.le Ell.{onal Initial time velocity
equation iteratively
Weighted least square fitting to : ;
. : = Solving the Eikonal g o ;
Method (II) pbtaln linear distributed initial data, RP sxuation Herattvely Initial time velocity
just take the constant part
Extend the ghost fluid
: : states and the spatial
Method (I1I) Welghtgd least. S ﬁ‘r‘rmg ) GRP derivatives of them by Initial time velocity
obtain linear distributed initial data IHE W,
linear and constant
extrapolation
Extend the ghost fluid
: . states and the spatial
Weighted least square fitting to i
Method (IV ik o Js GRP derivat f them by i i ‘
v obtain linear distributed initial data _§1 “? Wes 0_ g Middle time velocity
linear and constant
extrapolation
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Chart 4.2 Four methods.




Example 1 (The shock induced collapse of a helium bubble in air)
As shown in Figure 4.12, the left and right sides are nonreflective boundary condition,

and the upper and lower sides are reflective boundary condition, the computation domain is

[0,0.65]>< [ 0.089,0.089], and the number of the mesh 1s 420 x115.
The 1nitial states for helium are

(01sts,1, py)=(0.182,0,0,10°)

The 1nitial states for air are

(1,10011,, ;)= { (L0,0,10°), x<0.32+7r,(x—0.32) + y* > *(pre - shock),
o (1.37636,-124.824,0,156980), x> 0.32+7,(x—0.32)" + y* > r*(post - shock ).
A - -
0.089 | ¥ 4 pre-shock 4 post-shock

B L e
ohr
0.089

helium bubble
\ 4 1

~ Pl -
0.32 0.33

Figure 4.8 Schematic of initial flow configuration for “the shock induced collapse of a helium bubble in ait”.




Method (1)

Method (II)

Method (III)

Method (IV)

Figure 4.9 Comparison of the simulation results

against the experiment results of Hass and Sturtevant
(Fig.7 of page 52) for “The shock induced collapse

Test results of a helium bubble in air”.
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Example 2 (Richtmyer-Meshkov instability)
As shown in Figure 4.15, the left and right sides are nonreflective boudary condition,

and the upper and lower sides are reflective boundary condition, the computation domain

is[4.1] the number of the mesh is 400x100.
The 1nitial states for SF6 are

(pl,uxl,uyl,pl)z (5.04,0,0,1.0), 0<x<x. (y), Ve [0,1],

where x.(y) = x, — ecos(27ky), y €[0,1]
The initial states for air are

( )_ (1.0,0,0,1.0), xr < x<3.0, y €[0,1] (pre - shock),
Potharthyn Pr)= (1.628,0.39,0,1.411), 3.0<x<4.0, y €[0,1](post - shock ).
1.0
pre-shock_ post-shock
1.0 hore ,.
,XI_F .‘f'; .'iur
0.7 Sr -
2.9 1.1

Figure 4.10 Schematic of initial flow configuration “Richtmyer — Meshkov instabiliy”. 37
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Method (I) > Method (I) >
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Method (IV) > Method (IV) >

o
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o

Figure 4.12 Contour maps for density at ¢ = 4.62
38

Figure 4.11 Contour maps for density at ¢t = 2.31

for “Richtmyer — Meshkov instability”. for “Richtmyer — Meshkov instability”.
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Figure 4.13 Contour maps for density at # = 6.93 Figure 4.14 Contour maps for density at  =9.24

for “Richtmyer — Meshkov instability”. for “Richtmyer — Meshkov instability”. 39



Method | Time steps | Total extension time | Average extension time
Method (I) 1382 2.86 x 10%s 2.07x107"'s
Method (11 1369 3.00 % 107s 229 x 107 's
Method (11D 1363 6.99s 513 x 107s
Method (1V) 1363 6.60s 4.84 X 107%s

Chart 4.3 Time cost on fluid extension for “The shock induced collapse of a helium bubble in air”.

Method | Time steps | Total extension time | Average extension time
Method (D 3901 1.27 x 10°s 3.26 x 1075
Method (1D 3910 1.32 x 10°s 3.37x107's
Method (111 3836 3.58 x 10's 9.33x 1077s
Method (1V) 3834 3.31 x 10's 8.65 % 107%s

Chart 4.4 Time cost on fluid states extension for “Richtmyer Meshkov instability”.
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Thanks and Questions



