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1. Research background
ØThe practical application of compressible multi-medium problems

Supercavitating torpedo

Underwater explosion Jet  armour  piercing

Propeller cavitation

Figure 1.1 The practical application of compressible multi-medium problems. 3



medium 1 medium 2

Interface

★ Immiscible interface：
level set，front tracking and so on

Figure 1.2 the model for multi-medium fluid flows

★Two different mediums：
different EOS

★Control equations：
Euler equations 
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2. Ghost fluid method（GFM）
Ø The main idea of GFM
    By defining ghost fluid regions and ghost fluid states, a multi-medium problem can 
be decoupled into several single-medium problems, which can be solved seperately.
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 tg
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 tg
2  t

Figure 2.1 The main idea of GFM. 

The real fluid region 
of medium 1

The real fluid region 
of medium 2

The ghost fluid region 
of medium 2

The ghost fluid region 
of medium 1

Interface
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Ø The origin and development of GFM 
Different GFM differ in the way how the ghost fluid states are defined.
★ Define ghost fluid states by extrapolation from the real fluid regions

 

p （OGFM）Fedkiw R P , Aslam T , Merriman B , et al. A Non-oscillatory Eulerian Approach to Interfaces in   
Multimaterial Flows (the Ghost Fluid Method)[J]. Journal of Computational Physics, 1999, 152(2):457-492. 

p （GWGFM）Fedkiw R P . Coupling an Eulerian Fluid Calculation to a Lagrangian Solid Calculation with the Ghost 
Fluid Method[J]. Journal of Computational Physics, 2002, 175(1):200-224. 

p ......           

p （MGFM）
（1）Liu T G, Khoo B C, Yeo K S . Ghost fluid method for strong shock impacting on material interface[J]. Journal of 
Computational Physics, 2003.  
（2）Liu T G , Khoo B C , Wang C W . The ghost fluid method for compressible gas-water simulation[J]. Journal of 
Computational Physics, 2005, 204(1):193-221.                
p （RGFM）Wang C W , Liu T G , Khoo B C . A Real Ghost Fluid Method for the Simulation of Multimedium   

Compressible Flow[J]. Siam Journal on Scientific Computing, 2006, 28(1):278-302.
p （PGFM）Xu L, Feng CL, Liu T G. Practical techniques in ghost fluid method for compressible multi-medium flows 

[J]. Commun. Comput. Phys., 2016, 20:619-659.
p （IGFM）Hu X Y , Khoo B C . An interface interaction method for compressible multifluids[J]. Journal of 

Computational Physics, 2004, 198(1):35-64.
p ......

★ Define ghost  fluid states by a local double-medium Riemann problem
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Ø Mathematical model
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Figure 3.1 The mathematical model for one-dimensional 
compressible multi-medium problem.

3. One-dimensional compressible multi-medium problem

The source term

（3.1）
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Ø Riemann problem（RP）-based GFM in 1D
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Figure 3.2 The choice for the initial data of the local 
double-medium problem (3.2).

The source term is zero

The initial data are linearly distributed
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Figure 3.3 The wave structure of local double
-medium GRP (3.2) .
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ü The disadvantages of the RP-based GFM in 1D
     There will be pressure mismatch errors near the interface, and this kind of errors will 
accumulated over time.
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     The cause of the pressure mismatch errors: the spatial derivatives of the ghost fluid states defined 
by the RP based GFM are zero, which can not reflect the effects of the source terms in the equations.  
Therefore they can not maintain the continuity of the material derivatives of pressure. 10



Ø Generalized Riemann problem（GRP）-based GFM in 1D
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（3.3）

The source term of （3.1）

The primitive variables
in the initial data are
linearly distributed
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（3.4）

（3.5）

（3.6） Figure 3.4 The wave structure of local double
-medium GRP (3.3) .

  .2,1J asdefinedarenodesin thesestatesfluidtheofsderivativespatialThe.2,1J~
 as J medium ofinterfacethenearregionfluidrealtheandregionfluidghosttheinstatesfluidtheDefine

*J*J*J   ，， WWxxW n

The primitive variables in the intermediate 
states are linearly distributed in computation
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The spatial derivatives of the intermediate states （3.6）of the double-medium GRP（3.3）：

      We establish the equation for the material derivatives of pressure and velocity for each 
medium, and then according to the continuity of the material derivatives of pressure and velocity 
across the interface, i.e., 

combine them together to obtain

                                                                             
                                                                                                                                       Then
we can obtain the spatial derivatives of pressure and velocity by combining the 1D Euler 
equations.
     The spatial derivatives of density for each medium are obtained respectively. 
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ü The advatages of the GRP-based GFM in 1D

 Eliminate the pressure mismatch errors，even for long time simulation.
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 Improve the computation accuracy 
Reason 1:

Reason 2:
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ü Numerical results in 1D
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Example：Underwater explosion of radial symmetric flow.

Figure 3.5 Underwater explosion of 
radial symmetric flow.

WaterGas
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( )
.07.0= is n timecomputatio  the1/500 ismesh   theoffinenessThe

.3= explositon lsymmetrica sphericalUnderwater6.3Figure
t
m

，
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( )
.068.0= is n timecomputatio  the1/500 ismesh   theoffinenessThe

.2= explositon lsymmetrica lcylindricaUnderwater7.3Figure
t
m

，
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Ø Mathematical model

Figure 4.1 The mathematical model for two
-dimensional multi-medium problem.
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4. Two-dimensional compressible multi-medium problem
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     The two-dimensional Euler equations has 

Galilean invariance，so that the transformed
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with the tangential direction               ，when
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Ø Riemann problem（RP）-based GFM in 2D
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Figure 4.2 Search for the nodes near interfaces in real fluid regions.
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Figure 4.3 Establish a local coodinate system
along the tangential and normal directions.
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The source term is zero

The initial data are constantly distributed
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Figure 4.4 The wave structure of local double
-medium RP (4.1) .
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The intermediate states are also constantly distributed
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The effects of the source term associated with the tangential direction can not 
be reflected.

 There will be mismatch errors near the interface, since the continuity of 
the material derivatives along the normal direction of pressure and normal
velocity can not be maintained. 

ü The disadvantages of the RP-based GFM in 2D

The numerical results are not very well,  if we obtain the initial data by 
bilinear interpolation.

The numerical efficient is very low, if we extend the ghost fluid states by 
solving the Eikonal equation iteratively, since it needs to traverse the nodes in 
the ghost fluid regions for 20 to 30 times per time step.  
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Ø The generalized Riemann problem（GRP）-based GFM
The source term associated with the tangential direction

The primitive variables in the intial data are linearly distributed
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Figure 4.5 Data template for distance 
weighted least squares fitting.

27

linearly distributed



Figure 4.6 The wave structure of local double-medium
 GRP (4.5) .

 

 

 

 
 

  

   

 

.2,1J,,,

interface  theofdirection  normal  thealong sderivative spatial the
obtainto,4.4 GRP medium-double local theofdatainitial

theas,2,1J,,;,,;chooseThen

.2,1J,,,,

,2,1J,,, statesteintermediatheobtainto

,2,1J,,;isvariablesconservedofvector
thewithassociatedvariablesprimitiveofvectorthewhere

,0if,
,0if,

,

4.4 GRPmedium
-doublelocaltheofRPassociatedtheof datainitialtheas
5.4 following  thechoose,firstly,6.4 FigureinshownAs

*J*J*J*J*J

JJ

*J**J*J,

***J*J,

JJ,

,2

,1







































































































，

，

T

T

T

n

puuW

PWPW

pPuuW

puW

PWU

U
U

tU




































（4.6）

The intermediate states are also
linearly distributed in computation

4.6

4.5

4.5

（4.7）
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Figure 4.7 Extension by linear and 
constant extrapolation.
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    Firstly, consider the effects along the normal direction, secondly, consider the effects along the tangential direction, finally, 
combined with two-dimensional Euler equations,  by making use of the derivatives of each primitive variables with respect to 
time and tangential directions, we can obtain the derivatives of each primitive variables with respect to normal direction.
     Along the normal direction, establish an equation for the material derivatives along the normal direction  of normal 
velocity and pressure. According to the continuity of them across the interface respectively, i.e.,

      

where                              is the material derivatives along the normal direction,  combining the two equations,  we have                                           

 
     Along the tangential direction, we obtain the effects along the tangential direction by comparing the difference of the 
one-dimensional and two-dimensional Euler equations.         
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The spatial derivatives of the intermediate states （4.7）of the double-medium GRP（4.5）：
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 Eliminate the mismatch errors near the interface.
      The ghost fluid states defined by the GRP-based GFM can maintain the continuity 
of the material derivatives along the normal direction of the normal velocity and 
pressure across the interface,
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ü The advatages of the GRP-based GFM in 2D

 Reflect the effects of the source term associated with the tangential direction.
     Since the two-dimensional Euler equations have Galilean invariance under 
orthogonal coordinate transformation, there will be a source term associated with the 
tangential terms in the transformed equations in the local double-medium problem at 
the interface. However, the effects of this source term can not be reflected by the 
intermediate states of RP, but can be reflected by the intermediate states of GRP, as 
the spatial derivatives of the latter are not zero, but the spatial derivatives of the 
former are zero.
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 Improve the method of choosing the initial data of the local double-medium problem.
    We obtain the linear distributed initial data by distance weighted least square fitting, 
and make use of the fluid states at the nodes which are located in the real fluid region 
and two circles around the point to chose the initial data. Compared with chosing the 
initial data by bilinear interpolation, the numerical simulation effects are improved 
substantially.

 Improve the numerical efficiency of extending the ghost fluid states.
       We extend the ghost fluid states by linear and constant extrapolation. Compared 
with extending the ghost fluid states by solving the Eikonal equation iteratively, the 
numerical efficiency of extending the ghost fluid states are increased, since the former 
needs to traverse the nodes in the ghost fluid regions for 20 to 30 times per time step, 
while the latter only needs to traverse the nodes in the ghost fluid regions once per time 
step.    
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ü Numerical results in 2D
Chart 4.1 The coefficients 
in the stiffen gas EOS (4.6).
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Example 1（The shock induced collapse of a helium bubble in air）

.airin  bubble helium a of collapse inducedshocktheforionconfiguratflowinitialofSchematic8.4Figure ”“
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Example 2（Richtmyer-Meshkov instability）

.instabiliyMeshkovRichtmyerionconfiguratflowinitialofSchematic10.4Figure ”“ 

[ ] .100×400 ismeshtheofnumberthe4,1 is
domainn computatiotheconditionboundaryreflectivearesidesloweranduppertheand

conditionboudaryivenonreflectaresidesrightandleftthe,15.4FigureinshownAs

，
，

，

       
     

       
     


















.shock-post1,0,0.40.3,411.1,0,39.0,628.1
shock-pre1,0,0.3,0.1,0,0,0.1

,,,

areair for  statesinitial The
.1,0,2coswhere

,1,0,0,0.1,0,0,04.5,,,
are6SFforstatesinitialThe

2222

0

1111

yx
yxx

puu

ykyxyx
yyxxpuu

yx

yx

，






37



.yinstabilitMeshkovRichtmyerfor 
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.yinstabilit Meshkov Richtmyerforextension  states fluidoncostTime4.4Chart ”“
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