

Institute of Applied Physics and Computational Mathematics

Theoretical investigation of the intrinsic oxygen defects in UO₂ (111) and PuO₂ (111) surfaces

W T Lv, B Sun, P F Guan, Y Yang

Speaker: Wenting Lv

Time: 2023.06.01

С 0 Ν Т Ε Ν Т S

1 Introduction 2 Methodology 3 **Results and discussion** 4 **Conclusions**

O1 Introduction

Photocatalysis

H. She, et al. ACS Sustainable Chem. Eng. 2018

Electrocatalysis

J. Chen, et al. J. Energy Chem. 2021

Biomedical application

G. Wang, et al. J. Phys. Chem. C. 2019

Surface chemistry and corrosion of AnO₂

G. Wang, et al. J. Phys. Chem. C. 2019

AnO_2 (An = U, Pu)

Nuclear fuel

Long-term disposal of the spent fuel

Corrosion of uranium

Passive layer

Layer	UO ₂	PuO ₂	CeO ₂						
1 st	5.92	3.63	6.45	3.35	5.95	2.49	5.21	2.81	1.84
2 nd	5.93	3.93	6.14	3.40	6.08	2.54	4.98	2.43	1.76

T. Bo, et al. J. Phys. Chem. C 2014 J.P.W. Wellington, et al. J. Phys. G. Wang, et al. J. Phys. Chem. C. 2019 J. Paier, et al. Chem. Rev. 2013 Chem. C 2018

Electric charge density

J. Han, et al. J. Mater. Chem. 2011

oxygen diffusivity

A. Kushima, et al. J. Mater. Chem. 2011

Vacancy formation

A. Kushima, et al. Phys. Rev. B, 2011

O2 Methodology

Methodology

U: *U* = 4.5 eV, *J* = 0.5 eV

Pu: *U* = 4.75 eV, *J* = 0.75 eV

O_{ν} : Oxygen vacancy O_i : Oxygen interstitial

Larger number means deeper depth from the top surface

Methodology

Thermodynamics

$$\begin{split} E_{Vo}^{f} &= E_{Slab}^{Vo} - E_{slab}^{ideal} + \mu_{0}(T,p) + qE_{f} \\ E_{Io}^{f} &= E_{slab}^{Io} - E_{slab}^{ideal} - \mu_{0}(T,p) + qE_{f} \\ \mu_{0}(T,p) &= \mu_{0}(T,p_{0}) + (1/2)k_{B}Tln(p/p_{0}) \\ \mu_{0}(T,p_{0}) &= \mu_{0}(0\ K,p_{0}) + (1/2)\Delta G(T,p_{0},O_{2}) \end{split}$$

Т(К)	$\mu_O(extbf{eV})$	Т(К)	$\mu_O(extbf{eV})$
298.15	-0.272	900	-0.974
300	-0.274	1000	-1.010
400	-0.383	1100	-1.227
500	-0.495	1200	-1.356
600	-0.611	1300	-1.486
700	-0.730	1400	-1.618
800	-0.851	1500	-1.751

 $\mu_0(T, p_0) = (\frac{1}{2})[H(T, p_0, O_2) - H(0 K, p_0, O_2)] - (\frac{1}{2})T[S(T, p_0, O_2) - S(0 K, p_0, O_2)]$

Results and discussion

Formation stability of oxygen defects

Formation energies

- O_i is more easily formed than O_v in UO₂, while the possibility of forming O_v and O_i is similar in PuO₂
- O_v is most likely to form in the second O atomic layer for both UO₂ and PuO₂
- The formation energy of O_v gradually tends to be flat. The formation energy of O_i changes slightly with the surface depth.

Electronic properties

- \checkmark O_v defect states appear in the band gap of both UO₂ and PuO₂.
- \checkmark Compared to plutonium, uranium in UO₂ is more prone to bond with additional oxygen atoms

Strain effect

Variations of formation energy with lattice strain

- Stretching strain promote the formation of O_v, while compressive strain inhibit O_v
- Lattice strain has no regular influence on the formation energy of O_i

Strain effect

Bond distortion

- Stretching and compressive strain promote the U(Pu)-O bond distortions for O_v in UO₂ (111) and PuO₂ (111)
- The variation of the bond distortion induced by lattice strain of Ov in UO₂ (111) changes gently compared with the surface layers

Thermodynamic phase diagram

- The formation energy of O_v decreases with temperature, while the formation energy of O_i increase with temperature.
- The formation energies of O_v increase with the pressure, while the formation energies of O_i decrease with increasing pressure
- Stretching strain reduces the formation energy of vacancy, while compressive strain increases it, and formation of Oi is less affected by strain.
- Oi is easier to form in in UO₂ in the considering temperature and pressure range

Thermodynamic phase diagram

Phase diagram of formation of oxygen defects with different lattice strain

- Low oxygen partial pressure encourages the formation of vacancy, while high oxygen partial pressure facilitates the formation of interstitials
- Stretching strain enlarges the vacancy region and contracts the stable structure phase region, while compressive strain contracts the vacancy phase region and enlarges the stable structure region.

Conclusions

Conclusions

Structural stability

The formation of O_i is much easier than O_v in UO_2 , while the formations of O_i and O_v have similar chances in PuO_2 . O_v prefer to form on the subsurface layer for both UO_2 and PuO_2 . Comparatively, the formation of O_i is insensitive to the incorporation depth.

Strain response

Stretching strain reduces the formation energy of vacancy, while compressive strain increases it. Lattice strain has little effect on interstitial oxygen. This strain effect is mainly contributed by the local structural distortion, rather than the electronic hybridization.

Electronic characters

An O_v introduces a defect state in the band gap of UO_2 and PuO_2 . For Oi, its electronic states hybridize with neighboring uranium atoms and results in negligible changes in the band structure of UO_2 . Comparatively an O_i introduces a deep-level defect state in the band gap of PuO_2 .

Thermodynamic phase diagram

The strain-modulated formation energy phase diagrams of the oxygen defects have been established over a wide range of temperature and pressure, providing the potential strategy for controlling the type and concentration of intrinsic oxygen defects in UO_2 and PuO_2

Thank you for your listening!