

Численное моделирование теплового и напряженного состояния контейнера и массива окружающих пород

XVI международная конференция «ЗАБАБАХИНСКИЕ НАУЧНЫЕ ЧТЕНИЯ»

Боровский И.О.

г. Снежинск, 2023

Введение

Описание модели контейнера

Модель контейнера

Описание модели контейнера

Теплофизические свойства материалов

Материал	Теплопроводность Вт/(м·К)	Теплоемкость Дж/(кг·К)	Плотность кг/м ³	Коэффициент линейного расширения, α, 1/К
Остеклованные РАО	2,4	800	2500	8·10 ⁻⁶
Вмещающая порода	2,91	840	2700	28·10 ⁻⁶
Инженерные барьеры	8,1	1500	2800	0,8 ·10 ⁻⁶
Бетон	1,28	837	2000	12·10 ⁻⁶
Сталь	14,9	500	7800	16·10 ⁻⁶

Физико-механические свойства материалов

Материал	Модуль упругости,	Коэффициент	Предел прочности, МПа	
	Е, МПа	Пуассона, µ	$\sigma_{\scriptscriptstyle C \! arkappa}$	σ_{p}
Остеклованные РАО	7·10 ⁴	0,22	500	35
Вмещающая порода	6,2·10 ⁴	0,2	155	8
Инженерные барьеры	940	0,25	7,5	0,8
Бетон 0,2·10 ⁵		0,18	40	-
Сталь	2·10 ⁵	0,3	480)

ВЕРИФИКАЦИЯ ТЕПЛОВЫХ (ТЕРМОУПРУГИХ) РАСЧЕТОВ МКЭ ПУТЕМ СРАВНЕНИЯ С АНАЛИТИЧЕСКИМИ РЕШЕНИЯМИ

*q*₀=1 кВт/м³

Температура в граните:

 $T(t) = \frac{q_0 \cdot t \cdot V_6}{\rho \cdot C \cdot V_{\rm rp}}$

Переменное тепловыделение одного бидона

$$q(t) = q_0 \cdot e^{\frac{-t}{t_0}}$$

 q_0 =1 кВт/м³ – начальное тепловыделение. $t_0 = 40$ – время, за которое начальное тепловыделение уменьшается в *е* раз.

Температура в граните:

$$T(t) = \int_0^t \frac{q(t) \cdot t \cdot V_6}{\rho \cdot C \cdot V_{\rm rp}} dt$$

РФЯЦ-ВНИИТФ Росатом

Анализ теплового состояния контейнера и массива окружающих пород

РФЯЦ-ВНИИТФ

POCATOM

Анализ теплового состояния контейнера и массива окружающих пород

Распределение температуры в течение 500 лет в контейнере и массиве окружающих пород.

Изменение максимальной температуры в центральном бидоне и на наружной поверхности гранита.

Анализ напряженного состояния контейнера и массива окружающих пород

напряжений в стальных оболочках, МПа.

Распределение главного сжимающего напряжения в бетоне, МПа.

РФЯЦ-ВНИИТФ

РОСАТОМ

Анализ напряженного состояния контейнера и массива окружающих пород

напряжения в граните, МПа.

Распределение главного сжимающего напряжения (слева) и главного растягивающего напряжения (справа) в РАО, МПа.

РФЯЦ-ВНИИТФ

РОСАТОМ

Анализ результатов расчета

Максимальные значения главных напряжений в пластичных материалах.

Материал	σ _{экв} , МПа	Допустимое значение, МПа	Коэффициент запаса
Сталь (чехол)	236		2,0
Сталь (внутренняя оболочка)	470	480	1,0
Сталь (внешняя оболочка)	391		1,2

Максимальные значения главных напряжений в хрупких материалах.

Материал		σ ₁ , МПа	σ ₃ , МПа	<i>т</i> , МПа	Коэффициент запаса
Гранит		0	102	44	1,5
Бетон		0	80	40	0,5
PAO	средний	9,5	0,9	4,9	3,7
	верхний	11,1	2,3	5,6	3,1
	нижний	10,8	2,3	5,5	3,2

Анализ напряженного состояния контейнера и массива окружающих пород с учетом пластического деформирования материала

оболочках, отн.ед.

максимального значения, МПа.

РФЯЦ-ВНИИТФ

POCATOM

Анализ напряженного состояния контейнера и массива окружающих пород с учетом пластического деформирования материала

Распределение главного сжимающего напряжения в бетоне в момент достижения максимального значения, МПа. Распределение главного сжимающего напряжения (слева) и главного растягивающего напряжения (справа) в РАО в момент достижения максимального значения, МПа.¹²

Анализ результатов расчета

Максимальная пластическая деформация в стальных оболочках.

Материал	ε _p , %	Относительное удлинение после разрыва δ, %
Сталь (чехол)	0,04	
Сталь (внутренняя оболочка)	0,35	40
Сталь (внешняя оболочка)	0,14	

Максимальные значения главных напряжений в хрупких материалах.

Материал		σ ₁ , МПа	σ ₃ , МПа	т, МПа	Коэффициент запаса
Гра	нит	0	104	45,6	1,5
Бе	тон	3,8	71	30,9	0,6
	средний	8,5	1,05	4,6	4,2
PAO	верхний	10,8	2,4	5,5	3,2
	нижний	10,6	2,4	4,44	3,3

Заключение

14

- Разработана расчетная модель контейнера с РАО с учетом инженерных барьеров и окружающей его породы с использованием метода подконструкций;
- проведены верификационные процедуры тепловых расчетов МКЭ путем сравнения с известными аналитическими решениями;
- рассмотрена задача численного моделирования температурных полей в области контейнера и окружающих его пород, решение которого базировалось на исходных данных (граничных условий) [1];
- использование метода подконструкций позволило получить напряженное состояние контейнера и окружающей породы в момент реализации максимальных напряжений на период 500 лет в линейной постановке и с учетом пластического деформирования;
- по результатам проведенных численных расчетов сделана оценка прочности контейнера и окружающей породы.

 А.В. Абрамов. Аналитическое и численное моделирование теплового и напряженного состояния пункта глубинного захоронения радиоактивных отходов [Текст]: препринт / А.В. Абрамов, А.П. Бекетов, Г.Н. Рыкованов, А.Н. Хрулев, А.О. Чернявский. - №261. – Снежинск: изд-во РФЯЦ-ВНИИТФ, 2019. – С. 36.

Спасибо за внимание