

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ ПЕРЕНОСА РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ В ЗАДАЧАХ ИТС ДЛЯ МИШЕНЕЙ С НЕПРЯМЫМ ВОЗДЕЙСТВИЕМ

XVI Забабахинские научные чтения, Снежинск, 2023

Чубарешко Илья Сергеевич, Лыков В.А., Шестаков А.А.

Введение

В РФЯЦ-ВНИИТФ ведутся работы по развитию технологии расчетов мишеней инерциального термоядерного синтеза (ИТС) для более качественной постановки экспериментов на мощных лазерных установках.

Облучение мишеней:	Лазерные установки:	Форма бокса:
прямое;непрямое.	 OMEGA (США); NIF (США); Shenguang-III (Китай); LMJ (Франция). 	цилиндрическая;сферическая;«регби».

Цели и задачи работы

 определение асимметрии облучения мишеней потоком рентгеновского излучения при его распределении в полости цилиндрического и сферического боксов по двумерному комплексу БТ-ТОМ для изучения возможности симметризации сжатия мишеней ИТС.

Моделируемые процессы

- газодинамическое движение;
- перенос рентгеновского излучения в сером кинетическом приближении;
- поглощение лазерного излучения.

Задача 1

4

$$J(t, R_{1} = 10; \theta; \stackrel{r}{\Omega} \cdot \stackrel{r}{n} < 0) = 0,$$

$$J(t, R_{2} = 25; \theta; \stackrel{r}{\Omega} \cdot \stackrel{r}{n} < 0) \equiv J_{ep}(t, \theta),$$

$$J_{ep}(t, \theta) = \frac{c\sigma T_{f,epan}^{4}(t)}{4\pi} (1 + k_{2}P_{2}(x) + k_{4}P_{4}(x)),$$

$$P_{2}(x) = \frac{1}{2} (3x^{2} - 1), P_{4}(x) = \frac{1}{8} (35x^{4} - 30x^{2} + 3).$$

№ варианта	k ₂	k ₄
1	0	0
2	0.16	0
3	0	0.16

Полиномы Лежандра. Коэффициенты асимметрии облучения

$$S(t,\mu) = \sum_{l=0}^{L} a_{l}(t) \cdot P_{l}(\mu) = S_{0}(t) (1 + \gamma_{1}(t) P_{1}(\mu) + \gamma_{2}(t) P_{2}(\mu) + \gamma_{3}(t) P_{3}(\mu) + ...),$$

$$\mu = \cos\theta, \quad S_0(t) = \frac{1}{2} \int_{-1}^{1} S(t,\mu) d\mu, \quad \gamma_n(t) = \frac{2n+1}{2S_0(t)} \int_{-1}^{1} S(t,\mu) P_n(\mu) d\mu,$$
$$P_{n+1}(\mu) = \frac{\mu(2n+1)}{n+1} P_n(\mu) - \frac{n}{n+1} P_{n-1}(\mu), P_0(\mu) = 1, P_1(\mu) = \mu.$$

Сравнение с аналитическим решением $S(t, \mu) = \sum a_{\mu}(t) \cdot I$

$$A_{n}(k) = 2\int_{k}^{1} \frac{(\mu - k)(1 - k\mu)}{(1 - 2k\mu + k^{2})^{2}} P_{n}(\mu) d\mu,$$

npu $k = \frac{R_1}{R_2} = 0.4, A_2 = 0.5944, A_4 = 0.1448$

$$S(t,\mu) = \sum_{n=0}^{\infty} a_n(t) \cdot P_n(\mu) = S_0 \left[1 + \sum_{n=1}^{\infty} \gamma_n \cdot P_n(\mu) \right],$$

$$S^0(t,\mu) = \sum_{n=0}^{\infty} a_n^0(t) \cdot P_n(\mu) = S_0 \left[1 + \sum_{n=1}^{\infty} \gamma_n^0 \cdot P_n(\mu) \right],$$

$$A_n(k) = \frac{a_n^0}{a_n} = \frac{\gamma_n^0}{\gamma_n}.$$

РФЯЦ-ВНИИТФ РОСАТОМ

Ē

Задача 2

Параметры системы

№ обл.	Вещество	ρ ₀ (г/см ³)	Сетка по радиусу
1	DT газ	3·10 ⁻⁴	8
2	DT лед	0.25	14
3	CHOBr	1.05	80
4	$He_{0.34}H_{0.66}$	8·10 ⁻⁴	20
5	Au	19.3	83
5	СН(окна)	0.0175	83

Параметры лазерных лучей

№ луча	1	2	3
θ _{RAY}	59.5°	49°	33.2°
α _{max}	3.6°	3.6°	3.6°
r _f (мм)	0.5	1.5	2
z _f (mm)	5.5	6.3	8
R(мм)	0.3	0.3	0.3

Ход лазерных лучей внутри полости бокса на конечный момент времени

0.2

0.4

0.6

0.8

1

0

Z, CM

-0.8

-1

-0.6

-0.4

-0.2

Распределение температуры излучения

11

Результаты расчетов

Состояние мишени на конечный момент времени: а) набор вещества (пурпурный- полистирол, синий- DT-лёд, зелёный- DT-газ), б) температура вещества, в) температура излучения, г) давление

Зависимость фотонной температуры на поверхности мишени от времени:

a) профиль температуры, полученный по расчетам комплекса БТ-ТОМ с использованием программного модуля LASER,

б) профиль температуры взятый из работы P.A.Holstein, F.ChalandEvolution of the target design for the MJ laser. Laser and Particle Beams, 17(3), pp.403-413, 1999.

t, нс	${\gamma}_2$	${\gamma}_4$
10	0.1655	-0.1116
15	0.1268	-0.0472
17	0.1618	-0.0243
18	0.1153	-0.0022

Коэффициенты ү на несколько промежуточных моментов времени.

Задача 3

Параметры системы

Обл.	В-во	р, г/см ³
1	DT	0.03
2	Al	2.7
3	Al	2.7
4	He ⁴	4.10-4
5	СН	0.02

Параметры лазерных лучей

№ конуса	1	2
Доля мощности в пучке от полной P(t)	0.5	0.5
Э- угол с осью симметрии	30 [°]	150 [°]
α _{max} - угол полураствора пучка	6°	6°
r _f (л.ед.д.)- координаты фокуса	0.0	0.0
z _f (л.ед.д.)- координаты фокуса	51.0	-51.0
r _o (л.ед.д.)- радиус фокального пятна	3.0	3.0

t, нс	${\gamma}_2$	${\cal Y}_4$
1	-0.1541	-0.0213
3	-0.1516	-0.0054
6.6	-0.0009	0.0078
8	0.0123	0.0119

Коэффициенты ү на несколько промежуточных моментов времени.

Заключение

• Для оценки точности моделирования асимметрии облучения мишеней потоком рентгеновского излучения проведено сравнение результатов численных расчетов с аналитическими решениями. Результаты расчетов показали, что значения коэффициентов редукции излучения A_{2,4} согласуются с аналитическими значениями.

- В расчетах получено, что коэффициенты асимметрии облучения ведут себя немонотонно. На времена, близкие к завершению расчетов, амплитуды коэффициентов уменьшаются.
- В сферической системе в момент максимального сжатия мишени амплитуды коэффициентов асимметрии меньше, чем в цилиндрической.
- Дальнейшие работы по исследованию симметрии облучения мишеней предполагают совершенствование модели поглощения с учетом прохождения и отражения лазерных лучей в плазме.

Благодарности

Шушлебину А.Н. за поддержку данной работы,

Кошелеву В.С., Соколову Р.Н., Сырцову А.А., Ураковой А.В.

за консультации по комплексу БТ-ТОМ,

Заболотниковой Т.В., Стрелец Е.Ю. за консультации при счете задач.

Спасибо за внимание

Чубарешко Илья Сергеевич

XVI Забабахинские научные чтения, Снежинск, 2023