

ЧЕЛЯБИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Исследование энергии границ зерен различных типов в алюминии методами машинного обучения

Канд. физ.- мат. наук

Фомин Евгений Владимирович

Челябинский государственный университет

fomin33312@gmail.com

Исследование выполнено за счёт гранта Российского научного фонда No 22-71-00090, https://rscf.ru/project/22-71-00090/.

2023

Мотивация

Механические, прочностные и эксплуатационные свойства металлов и сплавов значительным образом определяются их микроструктурой. Границы зерен (ГЗ) всегда присутствуют в металлических материалах в большом количестве. ГЗ можно характеризовать через ее энергию, так как от энергии ГЗ зависят несколько важных физических процессов и характеристик материала: (i) подвижность ГЗ в кристаллах пропорциональна энергии, и именно она определяет процессы роста зерен и рекристаллизации (Nino et al., 2023); (ii) популяция границ в кристаллах обратно пропорциональна энергии ГЗ (Holm et al., 2011), что определяет распределение границ зерен в металлических образцах (Ratanaphan et al., 2017).

Изображение миграции границы Σ7 шаг за шагом. Структурные единицы наложены на ГЗ. Изображения получены при помощи просвечивающей электронной микроскопии (HAADF-STEM), чтобы показать детальную атомную структуры ГЗ в процессе движения. Структурные единицы ГЗ, наблюдаемые во время её миграции, показаны в нижней части (Feng et al., 2022).

Эволюция отдельного зерна. (а) Исходная микроструктура зерна. То же зерно после эволюции микроструктуры в течение 100 временных шагов при моделировании с использованием (b) изотропной, (c) Рида-Шокли и (d) BRK функции энергии ГЗ. Зерна окрашены по энергии ГЗ (Nino et al., 2023).

Верхние рисунки. Синие линии минимальная энергия ГЗ, зеленые пунктирные линии - равновесная усредненная по ансамблю ГЗ энергия при половине объемной температуры плавления, красные сплошные линии - неравновесная усредненная по ансамблю ГЗ энергия.

Нижние рисунки. Число состояний ГЗ, которые заштрихованы серым цветом, а также число состояний с различными энергиям, которые заштрихованы синим цветом (Han et al., 2016).

МД постановка

Схема бикристалла чистого алюминия, содержащего 2 зерна и 2 границы зерна:

- a) моделируемый бокс с зернами бикристалла и без ГЗ, указана пространственная система координат бокса;
- b) ГЗ в случае симметричных границ наклона, указаны системы координат связанные с зернами кристалла и показывающие кристаллографические направления решетки;
- с) ГЗ в случае симметричных границ поворота, указаны системы координат связанные с зернами кристалла и показывающие кристаллографические направления решетки.

Для исследования энергии ГЗ в работе используется метод классической молекулярной динамики, реализованный программным комплексом LAMMPS (Plimpton et al., 1995). Межатомное взаимодействие в методе МД определялось потенциалом с угловой зависимостью (Apostol et al., 2011), а визуализация и анализ атомной структуры проводилась в программе OVITO (Stukowski, 2010). Бикристаллы создавались в программном пакет ATOMSK (Hirel, 2015).

$$\gamma_{gb} = \frac{E_{gb} - NE_{bulk}(T)}{2A}$$

Результаты полученные из МД моделирования

Симметричные ГЗ в плоскости границы (110)

Сравнение полученных в работе энергий ГЗ при температуре 100 К, экспериментальных данных (Sutton et al., 1987) и теоретических результатов (Bulatov et al., 2014; Tschopp et al., 2015; Yin et al., 2017) из других исследований для симметричных границ наклона а) и поворота b).

Сравнение энергий симметричных ГЗ наклона (верхние графики) и поворота (нижние графики) для нескольких температур: 100, 400 и 700 К.

Асимметричные ГЗ в плоскости границы (100)

Сравнение энергий ассиметричных ГЗ наклона для нескольких температур: 100, 300, 500 и 700 К. Разориентировка левого зерна фиксировалась и правое зерно поворачивалось относительно оси *Y*

Аппроксимация функции энергии ГЗ искусственными нейронными сетями

Глубокие нейронные сети

Глубокие искусственные нейронные сети (ИНС) содержать полносвязанные уровни на которых вычисляются функции активации искусственных нейронов, которые затем передаются дальше по ИНС для вычисления следующих функций активации. В скрытых слоях часто используют функции PReLU (He et al., 2015) или Swish (Ramachandran et al., 2017), а на выходном слое - сигмоидальные.

График сигмоидальной функции

График функции Swish

Обучение нейронной сети

Обучение нейронной сети достаточно часто реализуется алгоритмом Adam (Kingma and Ba, 2014), который фактически является оптимизацией метода стохастического градиентного спуска с переменным шагом. В свою очередь, стохастический градиентный спуск – минимизация функции стоимости по осредненному значению градиента по выборкам из данных $\{x^{(1)}, ..., x^{(m)}\}$ с целями $y^{(i)}$

$$L = -\frac{1}{m} \sum_{i} \left[\vec{y}^{(i)} \ln \vec{a} + (1 - \vec{y}^{(i)}) \ln (1 - \vec{a}) \right]$$
$$\vec{g} = \frac{1}{m} \nabla_{\vec{\theta}} \sum_{i} L \left(f\left(\vec{x}^{(i)}, \vec{\theta}\right), \vec{y}^{(i)} \right)$$
$$\vec{s}^{(n+1)} = \rho_{1} \vec{s}^{(n)} + (1 - \rho_{1}) \vec{g}$$

$$= \rho_2 \vec{r}^{(n)} + (1 - \rho_2) \vec{g} \odot \vec{g}$$

Функция потерь в виде бинарной перекрестной энтропии (*а* – вычисленное значение нейросети)

Усредненный градиент функции стоимости по параметрам heta (*m* – размер выборки)

Обновление первого момента градиента s(параметр $\rho_1 = [0,1)$)

Обновление второго момента градиента s(параметр $\rho_2 = [0,1)$)

$$\hat{\vec{s}}^{(n+1)} = \frac{\vec{s}^{(n+1)}}{1 - \rho_1^t}$$
$$\hat{\vec{r}}^{(n+1)} = \frac{\vec{r}^{(n+1)}}{1 - \rho_2^t}$$
$$\Delta \vec{\theta} = -\varepsilon \frac{\hat{\vec{s}}^{(n+1)}}{\sqrt{\hat{\vec{r}}^{(n+1)}} + \delta}$$
$$\vec{\theta}^{(n+1)} = \vec{\theta}^{(n)} + \Delta \vec{\theta}$$

Корректировка первого момента градиента (*t* – номер текущей эпохи)

Корректировка второго момента градиента (*t* – номер текущей эпохи)

Вычисление приращения параметров нейросети (δмалый параметр для численной стабилизации)

Обновление параметров нейросети на текущем шаге алгоритма

Результаты аппроксимации ИНС

Схема ИНС, которая вычисляет значение минимальной энергии границ зерен (выходной слой) в зависимости от угла разориентировки и температуры. Внутренние слои содержат функции активации типа Swish, а выходные сигмоидальные. Для поточечной статистической оценки точности ИНС использовалась перекрестная энтропия.

Swish Sigmoid $f(z) = \frac{z}{1 + e^{-\beta z}}$ $\sigma = \frac{1}{1 + e^{-z}}$

Loss function

$$L = -\frac{1}{n} \sum_{i=1}^{n} y^{i} \ln \hat{y}^{i} + (1 - y^{i}) \ln(\hat{y}^{i})$$

Результаты аппроксимации ИНС

Параметры	ИНС 1 (ГЗ наклона)	ИНС 2 (ГЗ поворота)
β (параметр Swish)	2.0	0.25
Кол-во скрытых слоев	5	6
Кол–во нейронов в скрытом слое	15	15
μ (начальный шаг Adam)	0.001	0.001
Кол-во эпох	37500	67900
Размер обучающей выборки	5	2
Кол–во тренировочных данных	45 ГЗ	44 ГЗ
Кол–во тестовых данных	5 ГЗ	4 ГЗ

ИНС	ИНС 1 (ГЗ наклона)	ИНС 2 (ГЗ поворота)
Средняя МАРЕ	1.1	0.35
Максима льная МАРЕ	2.87	0.73

Перспективы. Исследование модуля сдвига в зависимости от плотности и температуры для Al и Al-Cu сплавов.

МД постановка

Методом МД реализована одноосная деформация 5-ти металлических материалов вдоль кристаллографического направления [100]: чистого алюминия, чистой меди, твёрдого раствора атомов меди в алюминии (2 и 5 ат. %) и упрочненного наноразмерными кластерами меди Рассматривалось кристалла алюминия. несколько температур системы в процессе деформации: 100, 200, 300, 400, 500, 600, 700, 800, 900 К. Все рассмотренные системы содержат 500 000 атомов, а кристаллографические направления [100], [010], [001] соответствуют осям X, Y, Z

Модуль сдвига вычисляется по касательной к дериватору тензора напряжений

 $P - S_{xx} = g \times \varepsilon$

где *P* - *S*xx — значение девиатора тензора напряжений в случае одноосной деформации, *є* — текущая деформация в точке состояния

Зависимость модуля сдвига от температуры и плотности

Корреляционные кривые предсказаний ИНС и тестовых данных

14

2-мерная модель

Данная часть исследований связана с разработкой 2-мерной модели сплошной среды. Модель разработана в численной схеме представленной Уилкинсом (Wilkins, 1967) в плоской постановке и для расчетов в параллельном режиме. Также добавлена модель дислокационной пластичности с учетом кинетики ансамбля дислокаций (Mayer, 2014; Khishchenko and Mayer, 2021).

Для ее реализации выбран язык программирования Julia (https://julialang.org) по нескольким значимым причинам.

- (1) Данный язык изначально создан для математических вычислений и позволяет программировать только на нем без потери в производительности (в отличии от Python, который в научных вычислениях фактически является интерфейсом для библиотек, написанных на других языках).
- (2) Параллелизм встроен в язык как парадигма и нет необходимости подключения внешних библиотек (как например, mpich или openMPI для распределенных вычислений в C++/Fortrun). Так же Julia содержит удобные для параллелизма структуры, например, SharedArray или DistributedArray, которые видны на запись/чтение, чтение для всех рабочих процессоров, что позволяет писать параллельный код на высоком уровне абстракции без явного указания передачи и приема данных с одного процессора на другой.
- (3) Julia устанавливается и запускается в своей интерактивной командной строке, через которую также устанавливаются библиотеки и делает данный язык кроссплатформенным: разработанный код сплошной среды без лишних манипуляций успешно тестировался на платформах MacOS и Linux (Ubuntu).

Уравнение состояния в численной схеме встраивалось в виде обученной ИНС

$$P, E = f_{ANN}(\rho, T)$$
 С постоянным модулем сдвига
 $P, E, G = f_{ANN}(\rho, T)$ С переменным модулем сдвига

Параметры моделирования

Проводилось моделирование высокоскоростного соударения путем задания начальной скорости в образце и определения скользящих граничных условий на правой границе по оси Ү. Остальные границы задаются как свободные поверхности. Параметры модели пластичности подобраны оценочно и по большей части подходят для моделирования деформации чистого алюминия – поэтому результаты будут приведены только для этого материала. Матрица систем скольжения задается одинаковой во всех ячейках, что соответствует моделированию монокристаллического образца. Визуализация результатов модели была сделана с помощью открытого программного пакета ParaView (https://www.paraview.org).

Начальные размеры образца	50×5 мкм²
Начальная скорость образца	300 м/с
Температура	300 К
Постоянный модуль сдвига	24×10 ⁹ Па
Начальная плотность	2669.9225825819 кг/м ³
Начальная плотность свободных дислокаций	1×10 ¹¹ 1/м ²
Начальная скалярная плотность дислокаций	1×10 ¹¹ 1/m ²
Начальная плотность неподвижный дислокаций	1×1013 1/m ²
Статический предел текучести	22×10 ⁶ Па
Коэффициент фононного трения дислокаций	3.5×10 ⁻⁵

Результаты 2-мерной модели для чистого алюминия. Давление

G - константа

Результаты 2-мерной модели для чистого алюминия. Пластические деформации

Результаты 2-мерной модели для чистого алюминия. Скорость (v_x)

G вычисляет ИНС

t =2.699 нс

19

Выводы

- Обнаружено, что можно выделить два типа энергии ГЗ: минимальную и среднюю. Это связанно с тем, что структура ГЗ не постоянна и включает метастабильные и стабильные состояния, которые обладают различными энергиями. В процессе поддержания кристалла с ГЗ при неизменной температуре могут проявляться различные состояния границы из-за теплового движения атомов.
- На основе полученных из МД моделирования данных минимальной энергии симметричных ГЗ наклона и поворота обучены искусственные нейронные сети для описания непрерывной зависимости энергии границ от температуры в диапазоне от 100 до 700 К. Обученные нейронные сети могут использоваться как функция энергии ГЗ в других исследованиях, например, для моделирования рекристаллизации.
- На основе данных МД моделирования одноосной деформации в упругой области обучены искусственные нейронные сети (ИНС) в качестве уравнений состояния. Другими словами, ИНС – это аппроксимации векторной функции, которая вычисляет вектор (P, E, K, G) на основе вектора аргументов (T, ρ)
- Результаты моделирования высокоскоростного соударения в монокристаллическом алюминии показывают, что по образцу распространяется ударная волна и сопутствующая пластическая деформация локализуется около места соударения. Для обоих моделей распределение давления в образце демонстрирует наличие ударной волны со значением на фронте 2.5 ГПа при времени моделирования 1.9 нс. Результаты модели с учетом изменения модуля сдвига в зависимости от текущей плотности ячейки показывают менее резкий волновой фронт при времени 1.9 нс. Также наблюдается более быстрое затухание ударной волны при 4.07 нс, тогда как при этом времени модель с постоянным модулем сдвига предсказывает хорошо различимый волновой фронт с пиковым значением в 2.1 ГПа.