

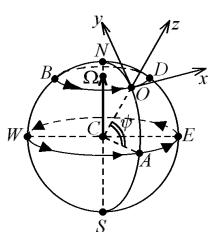
Аналитическое и численное моделирование течений в придонных частях восходящих закрученных потоков при учете действия сил тяжести и Кориолиса

О.В. Опрышко, А.А. Бугаенко, А.О. Казачинский, И.Ю. Крутова

Теория возникновения торнадо от поверхности Земли

2008г.: С.П. Баутин предложил теорию возникновения ВЗП от поверхности Земли. Баутин С.П. "Торнадо и сила Кориолиса". Новосибирск: Наука, 2008.

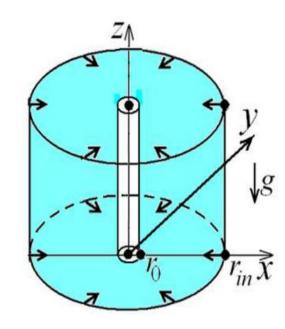
2018г.: в докладе исследователя Я. Хаузер 13.12.2018 на заседании Американского географического союза представлены прямые доказательства возникновения торнадо на поверхности Земли до обнаружения вращения на высотах.


Математическая модель

$$\begin{cases} c_t + uc_r + \frac{v}{r}c_{\varphi} + wc_z + \frac{(\gamma - 1)}{2}c\left(u_r + \frac{u}{r} + \frac{v_{\varphi}}{r} + w_z\right) = 0, \\ u_t + uu_r + \frac{v}{r}u_{\varphi} - \frac{v^2}{r} + wu_z + \frac{2}{(\gamma - 1)}cc_r = \underline{av} - \underline{bw}\cos\varphi, \\ v_t + uv_r + \frac{uv}{r} + \frac{v}{r}v_{\varphi} + wv_z + \frac{2}{(\gamma - 1)}\underline{c}c_{\varphi} = \underline{-au} + \underline{bw}\sin\varphi, \\ w_t + uw_r + \frac{v}{r}w_{\varphi} + ww_z + \frac{2}{(\gamma - 1)}cc_z = \underline{bu}\cos\varphi - \underline{bv}\sin\varphi - \underline{g}. \end{cases}$$

r — полярный радиус, φ — полярный угол в плоскости xOy; $c=
ho^{(\gamma-1)/2}$ - скорость звука газа; $\gamma=1.4$; u,v,w — радиальная, окружная и вертикальная составляющие V; $a=2\Omega\sin\psi$; $b=2\Omega\cos\psi$, $g={\rm const}>0$ — ускорение свободного падения.

Уравнение состояния: $p=rac{1}{\gamma}A^2(S)
ho^{\gamma},$


 $A^2(S)$ — энтропийная функция, $\gamma={
m const}>1.$ В случае изэнтропических течений газа: $S={
m const}.$

Стационарный случай

$$\begin{cases} uc_{r} + \frac{v}{r}c_{\varphi} + wc_{z} + \frac{(\gamma - 1)}{2}c\left(u_{r} + \frac{u}{r} + \frac{v_{\varphi}}{r} + w_{z}\right) = 0, \\ uu_{r} + \frac{v}{r}u_{\varphi} - \frac{v^{2}}{r} + wu_{z} + \frac{2}{(\gamma - 1)}cc_{r} = \underline{av} - \underline{bw}\cos\varphi, \\ uv_{r} + \frac{uv}{r} + \frac{v}{r}v_{\varphi} + wv_{z} + \frac{2}{(\gamma - 1)}\frac{c}{r}c_{\varphi} = \underline{-au} + \underline{bw}\sin\varphi, \\ uw_{r} + \frac{v}{r}w_{\varphi} + ww_{z} + \frac{2}{(\gamma - 1)}cc_{z} = \underline{bu}\cos\varphi - \underline{bv}\sin\varphi - \underline{g}. \end{cases}$$

$$(1)$$

Уравнение состояния:
$$p = \frac{1}{\gamma}A^2(S)\rho^{\gamma}$$
,

 $A^2(S)$ – энтропийная функция, $\gamma = {\rm const} > 1$. В случае изэнтропических течений газа: $S = {\rm const.}$

$$\begin{cases} c(r, \varphi, z)|_{z=0} = c_0(r, \varphi), \\ u(r, \varphi, z)|_{z=0} = u_0(r, \varphi), \\ v(r, \varphi, z)|_{z=0} = v_0(r, \varphi), \\ w(r, \varphi, z)|_{z=0} = 0. \end{cases}$$

$$\begin{cases} u_0(r,\varphi)|_{r=r_{in}} = u^o(\varphi,z)|_{z=0} = \text{const} < 0, \\ v_0(r,\varphi)|_{r=r_{in}} = v^o(\varphi,z)|_{z=0} = 0. \end{cases}$$
(3)

Задача (1), (2) в безразмерных переменных.

Цель исследования

Математическое моделирование придонной области вихря, повторяющей природное явление по данным натурных наблюдений и определение кинетической энергии потока с разработкой алгоритмов численных методов и системой компьютерного моделирования.

Задачи исследования

- 1. Разработать математический метод моделирования течения газа в придонной части потока, определяющий газодинамические параметры торнадо в рамках математической модели для стационарного случая.
- 2. Разработать численный метод определения газодинамических параметров потока на основе математического метода моделирования придонного природного течения газа.
- 3. Реализовать разработанные алгоритмы численных методов в виде системы компьютерного моделирования.
- 4. Провести вычислительные эксперименты для определения газодинамических параметров потока и кинетической энергии с учетом известных данных натурных наблюдений за торнадо.

Теорема 1. О необходимых условиях разрешимости. Для того, чтобы модель (1), (2) в стационарном случае имела решение необходимо выполнение следующих условий:

$$\begin{cases}
 u_0 u_{0r} + \frac{v_0 u_{0\varphi}}{r} - \frac{v_0^2}{r} + \frac{2}{(\gamma - 1)} c_0 c_{0r} = a v_0, \\
 u_0 v_{0r} + \frac{u_0 v_0}{r} + \frac{v_0 v_{0\varphi}}{r} + \frac{2}{(\gamma - 1)} \frac{c_0 c_{0\varphi}}{r} = -a u_0.
\end{cases}$$
(3)

Эти уравнения являются необходимыми условиями разрешимости. Для случая, когда предполагается существование решения задачи (1), (2) в дополнении ко всему должны выполняться условия разрешимости. Коэффициенты c_0 , u_0 , v_0 описывают плоское течение и одновременно являются слагаемыми ряда, который задает некоторое пространственное течение в окрестности непроницаемой плоскости z=0.

Теорема 2. О достаточных условиях разрешимости. Пусть выполняются условия (4):

$$\begin{cases} u(r,\varphi,z)|_{r=r_{in}} = u^{o}(\varphi,z), \\ v(r,\varphi,z)|_{r=r_{in}} = v^{o}(\varphi,z); \quad r_{in} = \text{const} > 0, \end{cases}$$

$$(4)$$

и аналитические функции $u^o(\varphi,z), v^o(\varphi,z),$ согласованы с условиями (2)

при значениях
$$z = 0, r = r_{in}$$
:

$$\begin{cases} u_0(r,\varphi)|_{r=r_{in}} = u^o(\varphi,z)|_{z=0},\\ v_0(r,\varphi)|_{r=r_{in}} = v^o(\varphi,z)|_{z=0}. \end{cases}$$
 тогда задача (1), (2), (4), (5) имеет однозначную разрешимость при аналитическом виде входных данных и выполнении необходимых условий раз-

тическом виде входных данных и выполнении необходимых условии разрешимости, которое определяется в некоторой окрестности точки M_0 с координатами $(r=r_{in},\,\varphi=\varphi_0,\,z=0)$, где φ_0 – любое значение из отрезка $[0,2\pi]$.

$$\mathbf{U}(r,\varphi,z) = \sum_{k=0}^{\infty} \mathbf{U}_k(r,\varphi) \frac{z^k}{k!}; \quad \mathbf{U}_k(r,\varphi) = \frac{\partial^k \mathbf{U}(r,\varphi,z)}{\partial z^k} \bigg|_{z=0}, \tag{6}$$

где в качестве компонент вектора ${\bf U}$ выступают искомые функции c,u,v,w.

$$c = c_0 + c_1 z + c_2 \frac{z^2}{2} + c_3 \frac{z^3}{6} + c_4 \frac{z^4}{24}; \qquad v = v_0 + v_1 z + v_2 \frac{z^2}{2} + v_3 \frac{z^3}{6}; u = u_0 + u_1 z + u_2 \frac{z^2}{2} + u_3 \frac{z^3}{6}; \qquad w = w_0 + w_1 z + w_2 \frac{z^2}{2} + w_3 \frac{z^3}{6} + w_4 \frac{z^4}{24}.$$

Для модели (1), (2) в стационарном случае рассматривается частный случай для радиальных течений, тогда полученная модель однозначно разрешима и решение имеет вид:

$$c_0(r) = \left[\frac{A}{ru_0(r)}\right]^{(\gamma-1)/2},$$

$$F(r, u_0) \equiv \frac{2}{(\gamma - 1)} \left(\frac{A}{ru_0}\right)^{(\gamma - 1)} + u_0^2 - B + \frac{a^2 r_{in}^4}{4r^2} + \frac{a^2}{4}r^2 = 0,$$

$$v_0(r) = \frac{a(r_{in}^2 - r^2)}{2r}, \quad v(r_{in}) = 0, \quad v_0(r) \neq 0 \quad \text{при} \quad r \neq r_{in},$$

 A, B, r_{in} - const.

При этом, определяется вид коэффициента c_1 :

$$c_1 = c_1(r, \varphi) = c_{10}(r) + c_{11}(r)\cos\varphi + c_{12}(r)\sin\varphi,$$

где

$$c_{10} = -g \frac{(\gamma - 1)}{2} \frac{1}{c_0(r)}; \quad c_{11} = b \frac{(\gamma - 1)}{2} \frac{u_0(r)}{c_0(r)}; \quad c_{12} = -b \frac{(\gamma - 1)}{2} \frac{v_0(r)}{c_0(r)}.$$

При определенных первых коэффициентов ряда строится некоторое пространственное течение с параметрами c_0, u_0, v_0 , находящегося в плоскости z=0.

Математический метод определения коэффициентов ряда

- **Этап 1.** Для определения первых коэффициентов ряда осуществляется переход для модели (1),(2) в стационарном случае от уравнений с частными производными к системе обыкновенных дифференциальных уравнений, а именно полагается z=0 и учитываются начальные условия.
- Этап 2. Определяются вторые коэффициенты ряда после дифференцирования системы (1) по переменной z, положенном z=0, известных начальных условий и \mathbf{U}_0 , c_1 , w_1 с первого этапа.
- **Этап 3.** Третьи коэффициенты ряда определяются после двукратного дифференцирования системы (1) по переменной z, положенном z=0 и известных \mathbf{U}_0 , \mathbf{U}_1 , c_2 , w_2 со второго этапа.
- **Этап 4.** Четвертые коэффициенты ряда определяются после трехкратного дифференцирования системы (1) по переменной z, положенном z=0 и известных \mathbf{U}_0 , \mathbf{U}_1 , \mathbf{U}_2 , c_2 , w_2 , c_3 , w_3 с третьего этапа.

Теорема 3. Пусть параметры c_0 , u_0 , v_0 , c_1 , w_1 ряда (6) однозначно определены, тогда все последующие коэффициенты представимы в виде конечных тригонометрических сумм вида (7), коэффициенты перед гармониками зависят от r:

$$w_k(r,\varphi) = w_{k,0}(r) + \sum_{j=1}^{k-1} \left[w_{k,2j-1}(r) \cos(j\varphi) + w_{k,2j}(r) \sin(j\varphi) \right]; \quad k = 2, 3, 4.$$

$$f_k(r,\varphi) = f_{k,0}(r) + \sum_{j=1}^{k} \left[f_{k,2j-1}(r) \cos(j\varphi) + f_{k,2j}(r) \sin(j\varphi) \right]; \quad k = 1, 2, 3.$$

$$(7)$$

где в качестве f выступают функции c, u, v.

При построении коэффициентов были получены рекуррентные соотношения, что в дальнейшем позволило последующие коэффициенты численно определить через предыдущие.

Кинетическая энергия восходящего закрученного потока

Кинетическая энергия газа, движущегося в области

(D):
$$\{r_0 \le r \le r_{in}; 0 \le \varphi \le 2\pi; 0 \le z \le h\}$$

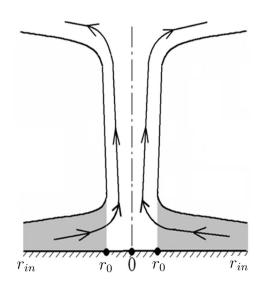
$$W = \frac{1}{2} \iiint_{(D)} \rho(x, y, z) \vec{V}^2 dx dy dz = \frac{1}{2} \int_0^h \left\{ \int_0^{2\pi} \left[\int_{r_0}^{r_{in}} \rho(r, \varphi) \vec{V}^2(r, \varphi) r dr \right] d\varphi \right\} dz,$$

 \vec{V} – вектор скорости газа.

$$W = \frac{1}{2} \int_{0}^{h} \left\{ \int_{0}^{2\pi} \left[\int_{r_{0}}^{r_{in}} c^{\frac{2}{(\gamma-1)}} \left(r,\varphi,z\right) \left(u^{2}\left(r,\varphi,z\right) + v^{2}\left(r,\varphi,z\right) + w^{2}\left(r,\varphi,z\right)\right) r dr \right] d\varphi \right\} dz.$$

$$W=W_u+W_v+W_w.$$

Поскольку рассматриваются изэнтропические течения политропного газа:


$$c^{2}(r) = \rho^{(\gamma-1)}, \quad \rho = c^{\frac{2}{(\gamma-1)}},$$

в случае воздуха $\gamma = 1.4$

$$\rho=c^{5}\left(r\right) .$$

Шкала Фудзиты*

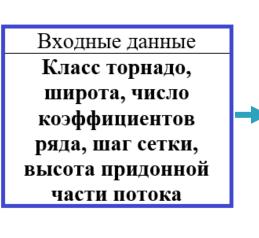
Класс торнадо	Скорость ветра, м/с	Ширина следа, м 2 $r_{ m 0}$	Средняя длина пути, км	Среднее время жизни, мин
F0	19-32	5-15	1.9	2.4
F1	33-50	16-50	4.2	5.2
F2	51-70	51-160	8.7	10.8
F3	71-92	161-508	16.1	20.0
F4	93-116	547-1448	43.8	54.4
F5	117-142	1609-4989	57.1	71.0

Расширенная шкала Фудзиты**

Класс торнадо	F00	F01	F10	F11	F20	F21	F30	F31	F40	F41	F50	F51	F52
Радиус стока r ₀ , м	2.5	5	8	16.5	25.5	52.75	80.5	167.5	273.5	498.7	804.5	1649.5	2494.5
V, м/с	19	25.5	33	41.5	51	60.5	71	81.5	93	104.5	117	129.5	142

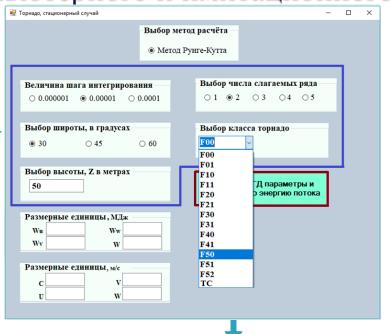
$$|\vec{V}|_{r=r_0} = \sqrt{u_0^2 + v_0^2}$$

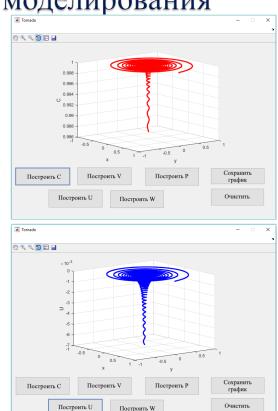
^{*}Tatom F.B., Witton S.J. The transfer of energy from tornado into the ground // Seismological Research Letter. -2001. −V.72. №1. − Pp.12-21.

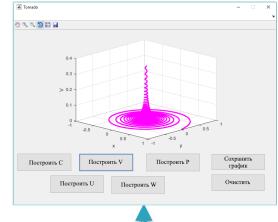

^{**}Крутова, И.Ю. Расчеты газодинамических параметров в придонной части торнадо // Вычислительные технологии. 2017. Т. 22, №1. С. 17-24.

Система компьютерного и имитационного моделирования

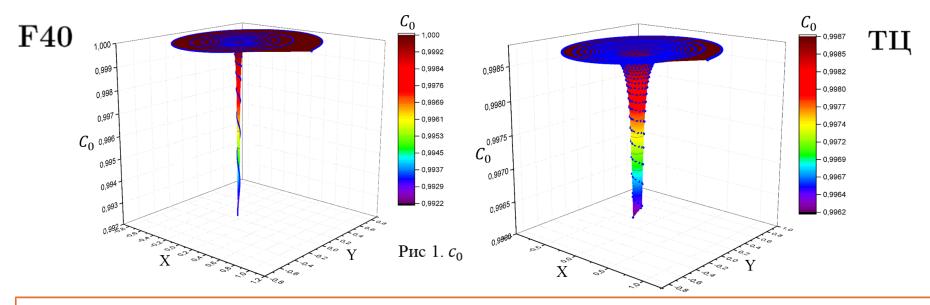
Блок расчета радиуса притока


Система компьютерного и имитационного моделирования


Выходные данные

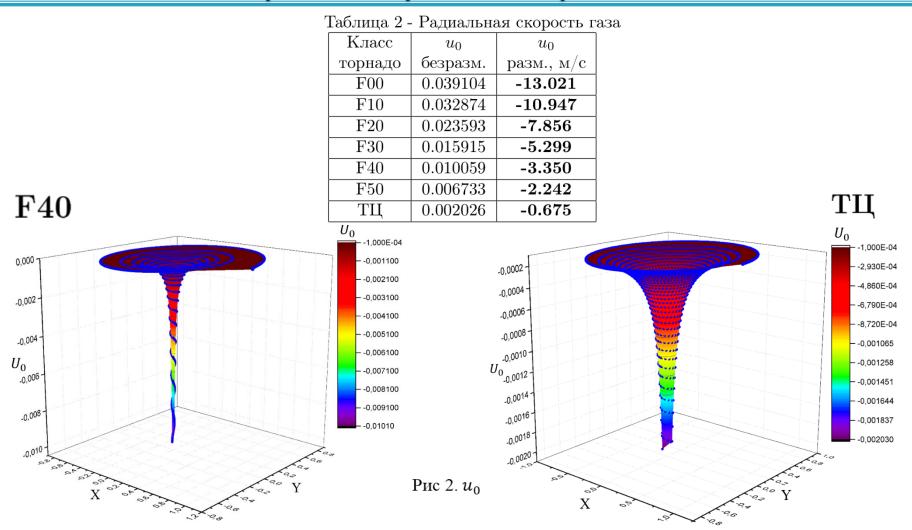

 $c_{r=r_0}, u_{r=r_0}, v_{r=r_0}, w_{r=r_0},$

 $W_{U_{r=r_0}}, W_{V_{r=r_0}}, W_{W_{r=r_0}}, W_{r=r_0}$



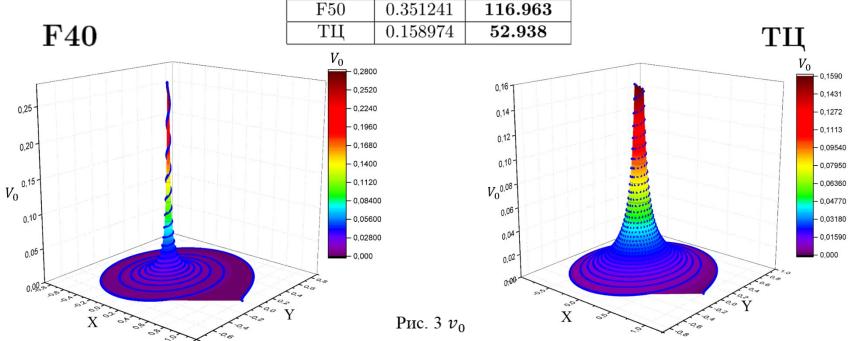
14

Скорость звука газа для торнадо F40 и тропического циклона


Таблица 1 - Скорость звука газа c_0

Класс	c_0 ,	c_0 , м/с	$\downarrow c_0$	ρ	$\downarrow \rho$,	$P(r_{in}),$	$P(r_0),$	$\downarrow P$,
торнадо	безразм.	разм.	%	безразм.	%	безразм.	безразм.	%
F00	0.999674	332.891	0.03	0.998	0.2	0.714	0.712	0.23
F10	0.999018	332.673	0.10	0.995	0.5	0.714	0.709	0.68
F20	0.997651	332.217	0.23	0.988	1.2	0.714	0.703	1.70
F30	0.995444	331.483	0.50	0.977	2.3	0.714	0.692	3.15
F40	0.992164	330.390	0.80	0.961	3.9	0.714	0.676	5.30
F50	0.987581	328.865	1.26	0.939	6.1	0.714	0.654	8.40
ТЦ	0.997469	332.157	0.25	0.987	1.3	0.714	0.702	1.80

В центре ВЗП находится область пониженного давления. С увеличением класса торнадо на большую величину изменяется c_0 , на большую величину снижается давление.

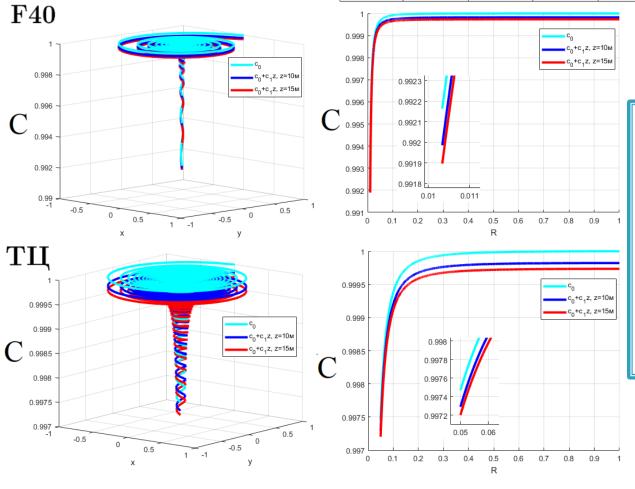

Радиальная скорость для торнадо F40 и тропического циклона

Радиальная скорость ветра имеет отрицательный знак - направлена в центр ВЗП. Наличие области пониженного давления ускоряет стремление газа в центр ВЗП. С увеличением класса торнадо уменьшается значение радиальной скорости.

Окружная скорость для торнадо F40 и тропического циклона

Таблица 3 - Окружная скорость газа Класс v_0 v_0 безразм. разм., м/с торнадо F000.04159313.850 F10 0.093449 31.119 F20 0.15134350.397 F30 0.21261570.8000.279195F40 92.972

Положительное значение окружной скорости ветра говорит о том, что закрутка газа идет против часовой стрелки.


С увеличением класса торнадо увеличивается окружная скорость ветра.

Вторые коэффициенты ряда, торнадо F40 и ТЦ, скорость звука газа

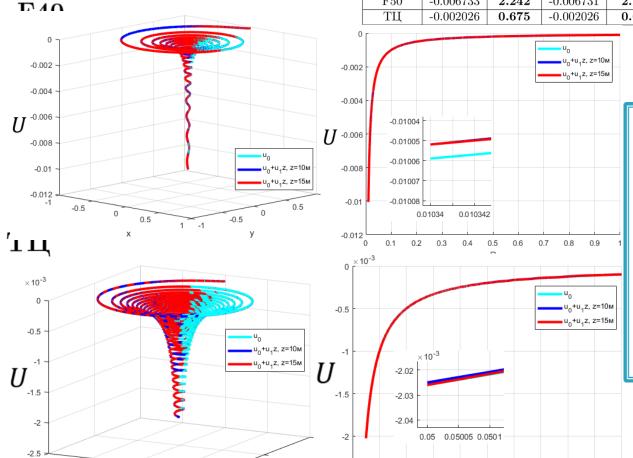
Обозначим: c_0+c_1z , при z=10 м как C_{h_1} , c_0+c_1z , при z=15 м как C_{h_2} .

z = 10 м -высота флюгера, с учетом неровностей Земной поверхности.

				1аолица 4	- Скорость	звука газа т	орнадо		
,	Класс	c_0	c_0 , м/с	C_{h_1}	C_{h_1} , м/с	$C_{h_1} - c_0$	C_{h_2}	C_{h_2} , м/с	$C_{h_2} - c_0$
L	торнадо	безразм.	разм.	безразм.	разм.	м/с (%)	безразм.	разм.	м/с (%)
•	F00	0.999674	332.891	0.999497	332.833	0.058(0.02)	0.999409	332.803	0.088(0.026)
	F10	0.999018	332.673	0.998841	332.614	0.059(0.02)	0.998753	332.585	0.088(0.026)
	F20	0.997651	332.217	0.997474	332.159	0.059(0.02)	0.997385	332.129	0.088(0.026)
	F30	0.995444	331.483	0.995266	331.424	0.059(0.02)	0.995178	331.394	0.089(0.027)
	F40	0.992164	330.390	0.991986	330.331	0.058(0.02)	0.991897	330.302	0.088(0.027)
	F50	0.987581	328.865	0.987402	328.805	0.060(0.02)	0.987313	328.775	0.090(0.027)
	ТЦ	0.997469	332.157	0.997292	332.098	0.059(0.02)	0.997203	332.069	0.088(0.026)

Относительная погрешность между базовыми вычислительными экспериментами и вычислительными экспериментами на высоте флюгера не превышает 0.02%.

Относительная погрешность между вычислительными экспериментами C_{h_2} и базовыми не превышает 0.03%.


Рис. 5 $c_0 + c_1 z$

Радиальная скорость, торнадо F40 и ТЦ

Обозначим: u_0+u_1z , при z=10 м как U_{h_1} , u_0+u_1z , при z=15 м как U_{h_2} .

-0.5

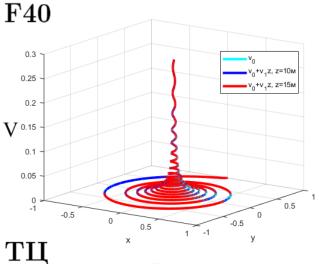
Таблица 5 - Радиальная скорость газа торнадо Класс u_0 , $\mathrm{m/c}$ U_{h_1} U_{h_1} , M/c $|U_{h_1} - u_0|$ U_{h_2} U_{h_2} , M/c $|U_{h_2} - u_0|$ u_0 безразм. M/c (%) $_{\rm M}/{\rm c}~(\%)$ торнадо разм. безразм. разм. безразм. разм. F00 0.03910413.021-0.039116 13.0260.004(0.03)-0.039127 13.029 0.008(0.06)F10 0.03287410.947 -0.032878 0.001(0.01)-0.032873 10.94710.9480.000(0.00)F20 -0.023593 7.856 -0.023580 7.8520.004(0.05)-0.023577 7.851 0.005(0.006)-0.015915 -0.015907 0.002(0.04)-0.015907 F30 5.299 5.297 5.297 0.002(0.04)F40 -0.010059 3.350 3.347 -0.0100523.3470.003(0.08)-0.0100520.003(0.08)2.242 2.241F50 -0.006733 -0.006731 0.001(0.04)-0.0067312.2410.001(0.04)ТЦ 0.675 -0.002026 -0.002026 0.6750.000(0.00)-0.002026 0.6750.000(0.00)

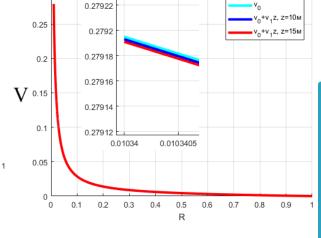
Puc. o $u_0 + u_1$

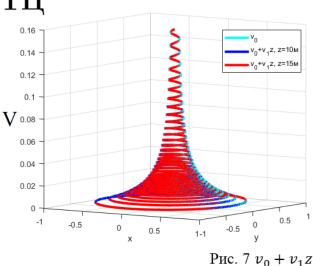
0.1

0.2 0.3

Относительная погрешность между базовыми вычислительными экспериментами и вычислительными экспериментами на высоте флюгера не превышает 0.08%.


Относительная погрешность между вычислительными экспериментами U_{h_2} и базовыми не превышает 0.08%.


Окружная скорость, торнадо F40 и ТЦ


Обозначим: v_0+v_1z , при z=10 м как V_{h_1} v_0+v_1z , при z=15 м как V_{h_2}

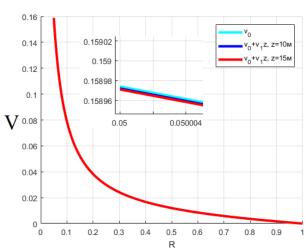
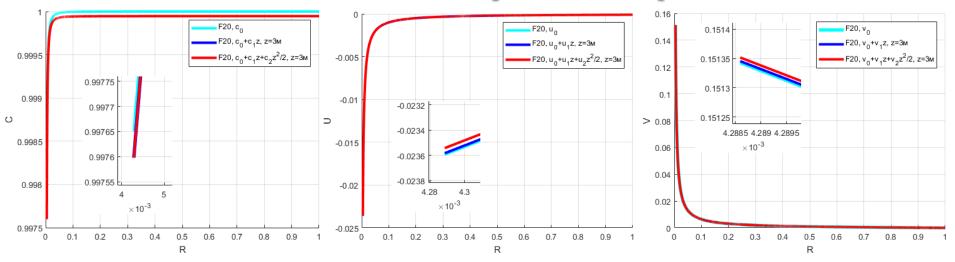

	таолица в - Окружная скороств таза торнадо									
	Класс	v_0	$v_0, { m m/c}$	V_{h_1}	V_{h_1} , м/с	$ V_{h_1} - v_0 $	V_{h_2}	V_{h_2} , м/с	$ V_{h_2} - v_0 $	
-	торнадо	безразм.	разм.	безразм.	разм.	м/с (%)	безразм.	разм.	м/с (%)	
•	F00	0.041593	13.850	0.041583	13.848	0.002(0.010)	0.041573	13.844	0.006(0.04)	
	F10	0.093449	31.119	0.093448	31.118	0.001(0.003)	0.093451	31.119	0.000(0.00)	
	F20	0.151343	50.397	0.151348	50.399	0.002(0.004)	0.151350	50.400	0.001(0.002)	
	F30	0.212615	70.800	0.212613	70.800	0.000(0.000)	0.212612	70.800	0.000(0.00)	
	F40	0.279195	92.972	0.279193	92.971	0.001(0.001)	0.279191	92.971	0.001(0.001)	
	F50	0.351241	116.963	0.351240	116.963	0.000(0.000)	0.351240	116.963	0.000(0.00)	
	ТЦ	0.158974	52.938	0.158972	52.938	0.000(0.000)	0.158971	52.938	0.000(0.00)	

Таблица 6 - Окружная скорость газа торнало



Относительная погрешность между вычислительными экспериментами V_{h_1} и базовыми не превышает 0.01%.

Относительная погрешность между вычислительными экспериментами V_{h_2} и базовыми не превышает 0.04%.

Наибольшая разница приходится на класс торнадо F00-y этого класса наименьшее r_0 и v_0 .

Вычислительные эксперименты, торнадо F20

$$c_0$$
 — базовый эксперимент c_0+c_1z , при $z=3$ м как C_{h_3} $c_0+c_1z+c_2z^2/2$, $z=3$ м как C_{h_4}

$$u_0$$
 — базовый эксперимент u_0+u_1z , при $z=3$ м как U_{h_3} v_0+v_1z , при $z=3$ м как V_{h_3} $u_0+u_1z+u_2z^2/2$, $z=3$ м как U_{h_4} $v_0+v_1z+v_2z^2/2$, $z=3$ м как V_{h_4}

$$v_0-$$
 базовый эксперимент v_0+v_1z , при $z=3$ м как V_{h_3} $v_0+v_1z+v_2z^2/2$, $z=3$ м как V_{h_2}

Скорость звука газа, радиальная и окружная скорости газа для z=3 метра.

Класс	c_0	C_{h_4}	$ C_{h_4} - c_0 (\%)$	u_0	U_{h_4}	$ U_{h_4} - u_0 (\%)$	v_0	V_{h_4}	$ V_{h_4} - v_0 (\%)$
торнадо	безразм.	безразм.	безразм.	безразм.	безразм.	безразм.	безразм.	безразм.	безразм.
F00	0.99967	0.99962	5.0E-05(0.005)	-0.03910	-0.03910	5.0E-08(0.0001)	0.041592	0.041594	2.0E- $06(0.005)$
F10	0.99902	0.99896	6.0E-05(0.006)	-0.03287	-0.03286	1.0E-05(0.03)	0.093448	0.093454	6.0E-06(0.006)
F20	0.99765	0.99759	6.0E-05(0.006)	-0.02359	-0.02354	6.0E-05(0.25)	0.151342	0.151351	9.0E-06(0.006)
F30	0.99544	0.99539	5.0E-05(0.005)	-0.01591	-0.015734	2.0E-04(1.26)	0.212614	0.212626	1.2E-05(0.006)
F40	0.99216	0.99211	5.0E-05(0.005)	-0.01005	-0.009433	6.0E-04(5.97)	0.279195	0.279213	1.8E-05(0.006)
F50	0.98758	0.98753	5.0E-05(0.005)	-0.00673	-0.005157	1.6E-03(23.77)	0.351240	0.351260	2.0E-05(0.006)
ТЦ	0.99747	0.99742	5.0E-05(0.005)	-0.00203	-0.001358	6.6E-04(32.51)	0.158973	0.158980	7.0E-06(0.004)

Кинетическая энергия потока

Таблица 4: Кинетическая энергия для базового расчета, широта $\pi/6$

Класс	W_U	W_V	W	
торнадо	МДж	МДж	МДж	W_V/W
F00	2.560E-01	2.540E-01	5.100E-01	0.4980
F01	8.220E-01	2.658E+00	3.480E+00	0.7638
F10	1.787E+00	1.268E+01	1.447E + 01	0.8763
F11	4.615E + 00	8.746E + 01	9.207E + 01	0.9499
F20	8.690E + 00	3.150E + 02	3.237E+02	0.9731
F21	2.040E+01	1.809E+03	1.830E + 03	0.9885
F30	3.572E + 01	5.655E + 03	5.690E + 03	0.9939
F31	8.049E + 01	3.008E+04	3.016E + 04	0.9974
F40	1.447E + 02	9.988E+04	1.000E + 05	0.9988
F41	2.811E+02	3.919E + 05	3.922E+05	0.9992
F50	4.873E + 02	1.211E + 06	1.212E + 06	0.9992
ТЦ	7.205E+02	3.417E + 06	3.418E + 06	0.9997
F51	1.026E + 03	5.658E + 06	5.659E + 06	0.9998
F52	1.636E + 03	1.472E+07	1.472E + 07	0.9999

Выводы

- 1. Проведено математическое моделирование течения воздуха в придонной части восходящих закрученных потоков, повторяющее данные натурных наблюдений, что позволило определить кинетическую энергию потока при формировании торнадо от поверхности Земли.
- 2. Разработан численный метод определения газодинамических параметров потока и кинетической энергии для математической модели, учитывающей формирование потока от поверхности Земли.
- 3. В виде системы компьютерного моделирования реализованы разработанные алгоритмы и проведены вычислительные эксперименты по данным натурным наблюдений за торнадо.

Спасибо за внимание!