МОДЕЛИРОВАНИЕ АНИЗОТРОПИИ ХОЛОДНОЙ И ТЕПЛОВОЙ ЧАСТЕЙ ДАВЛЕНИЯ

Кривошеина М.Н., Туч Е.В. (ИФПМ СО РАН)

Цель – создание математической модели для моделирования процессов деформирования материалов, характеризующихся анизотропией упругих, пластических свойств, упрочнения, разрушения, а также процесса деформирования разрушенного материала.

В рамках механики деформируемого твердого тела решается система уравнений: закон сохранения массы, закон сохранения импульсов, закон сохранения энергии в рамках безмоментной теории упругости.

Упругие деформации анизотропных материалов.

- Используется обобщенный закон Гука, записанный через компоненты тензоров полных напряжений и деформаций.
- Известны модели для статического и динамического нагружения, позволяющие исследовать процессы деформирования при любой симметрии свойств и в ауксетиках.
- Класс материалов: композиционные материалы с усредненными механическими характеристиками, композиционные стеклопластики, органопластики, углепластики, фанера, ауксетики, метаматериалы, геоматериалы, биоткани.
- Распространение упругих волн в геоматериалах, моделирование волновой картины деформирования, изменяющей время и место локализации разрушения из-за зависимости скоростей распространения упругих волн от направления.

Модель упругопластического деформирования анизотропных материалов

 $d\rho$ dt

dυ

dt

 $\frac{dE}{dt}$

 $(V_i v_i)$

 $e_{ij} = -$

-уравнение нера

при динамическом нагружении

Возможность разделения энергии упругой деформации на энергию изменения объема и энергию изменения формы определяется заполненностью матрицы упругих постоянных (для статических и динамических нагружений):

• Обобщенный закон Гука и вид матрицы упругих постоянных в общем случае анизотропии

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{yz} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{21} & C_{31} & C_{41} & C_{51} & C_{61} \\ C_{12} & C_{22} & C_{32} & C_{42} & C_{52} & C_{62} \\ C_{13} & C_{23} & C_{33} & C_{43} & C_{53} & C_{63} \\ C_{14} & C_{24} & C_{34} & C_{44} & C_{54} & C_{64} \\ C_{15} & C_{25} & C_{35} & C_{45} & C_{55} & C_{65} \\ C_{16} & C_{26} & C_{36} & C_{46} & C_{56} & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \varepsilon_{yz} \end{bmatrix}; \qquad C_{44} = \rho \upsilon_{S,23}^{2}$$

$$K = (C_{11} + C_{21} + C_{31} + C_{12} + C_{22} + C_{32} + C_{13} + C_{23} + C_{33})/9$$

$$K_{1} = (C_{11} + C_{21} + C_{31})/3$$

$$K_{2} = (C_{12} + C_{22} + C_{32})/3$$

$$K_{3} = (C_{13} + C_{23} + C_{33})/3$$

$$K\lambda_{ii} = (C_{i1} + C_{i2} + C_{i3})/3$$

$$\lambda_{ii} = (C_{i1} + C_{i2} + C_{i3})/3K$$

Доля линей	ной сжимаемости
в объемной	сжимаемости

σ_{xx}		C_{11}	C_{21}	C_{31}	0	0	0	Err	
σ_{yy}		C_{12}	C_{22}	C_{32}	0	0	0	$\mathcal{E}_{vv}^{\lambda\lambda}$	
$\sigma_{\scriptscriptstyle ZZ}$	=	<i>C</i> ₁₃	C ₂₃	C ₃₃	0	0	0	\mathcal{E}_{zz}	
σ_{xy}		0	0	0	C_{44}	C_{54}	C ₆₄	$2\varepsilon_{xy}$	
σ_{xz}		0	0	0	C_{45}	C ₅₅	C ₆₅	$2\varepsilon_{xz}$	
σ_{yz}		0	0	0	C_{46}	C_{56}	C ₆₆ _	$2\varepsilon_{yz}$	

Введение анизотропного давления влечет изменение разностной схемы в областях моделирования:

упругих деформаций, перехода от упругих деформаций к пластическим, в области пластических деформаций и упрочнения, в области процесса разрушения и деформаций разрушенного материала (при условии разрушения в условиях сжатия). Как следствие скорости распространения пластических волн сжатия или растяжения зависят от направления распространения. Анизотропное давление обеспечивает безопасное состояние анизотропного материала.

1						
	¹ / ₂ (C11 + C12 + 2 C44)	$\frac{1}{3}$ (C11 + 2 C12 - 2 C44)	$\frac{1}{6}$ (C11 + 5 C12 - 2 C44)	0	0	$\frac{-C11+C12+2 C44}{3 \sqrt{2}}$
1 3	(C11 + 2 C12 - 2 C44)	$\frac{1}{3}$ (C11 + 2 C12 + 4 C44)	$\frac{1}{3}$ (C11 + 2 C12 - 2 C44)	0	0	0
16	(C11 + 5 C12 - 2 C44)	$\frac{1}{3}$ (C11 + 2 C12 - 2 C44)	$\frac{1}{2}$ (C11 + C12 + 2 C44)	0	0	$\frac{C11-C12-2C44}{3\sqrt{2}}$
	0	0	0	$\frac{1}{3}$ (C11 - C12 + C44)	$\frac{\text{C11-C12-2 C44}}{3 \sqrt{2}}$	0
	0	0	0	$\frac{\text{C11-C12-2 C44}}{3 \sqrt{2}}$	$\frac{1}{6}$ (C11 - C12 + 4 C44)	0
	<u>-C11+C12+2 C44</u> 3 √2	0	<u>C11-C12-2 C44</u> 3 √2	0	0	$\frac{1}{3}$ (C11 - C12 + C44)

наличие в матрице упругих постоянных коэффициентов взаимного влияния первого и второго рода (по А.Л. Рабиновичу):

Пластическая деформация в материалах, характеризующихся анизотропией упругих и пластических свойств

Необходимо разложить тензоры полных напряжений и полных деформаций на шаровые и девиторные части для проверки условия текучести и для реализации соотношений, связанных с изменениями объема и формы. Действие импульса Змкс.

5.1

5,0-

4.9

4.8

20

10

Кривошеина М.Н., Радченко А.В., Кобенко С.В. Разрушение ортотропного и изотропного сферических тел под действием импульса всестороннего сжатия// МКМК, №1, 2001 с. 95-102

Изменение радиусов шара из монокристаллического цинка от исходного положения при упругой деформации

Изменение радиусов шара при

– аналогично статическому

нагружению.

упругопластической деформации

Упругие постоянные ГПУ-монокристаллического цинка: С11=С22 =161, С33=61, С12=35, С13=50, С44=38; С66=63ГПа (2.64), (1.625) Технические постоянные:

К1=К2=82, К3=54ГПа – модули объемного сжатия (1.52), (1.234) E11=E22=120, E33=35ГПа, модули Юнга (3.43), (1.85) 0.25, - 0.056, 0.86 - коэффициенты Пуассона $\lambda_{11} = 1.13, \quad \lambda_{22} = 1.13, \quad \lambda_{33} = 0.74, \quad \lambda_{11} / \lambda_{33} = 1.527.$

Изменение радиусов шаров при упругопластическом деформировании. Реализация изотропного и анизотропного давления. Учет анизотропии в девиаторах напряжений 5.3 на форму шара не влияет!

Скорости упругих волн цинка: C1,33=2980 м/с, C1,11=C1,22=4730 м/с, $: C_{1,33} = 2923 \text{ M/c}, C_{1,11} = C_{1,22} = 4749 \text{ M/c},$ $: C_{b,33}=2742 \text{ M/c}, C_{b,11}=C_{b,22}=3383 \text{ M/c}$

0.6 t, mks 0.8

Сопротивление ударно-волновому деформированию и разрушению монокристаллов цинка при повышенных температурах А.А. Богач, Г.И. Канель, С.В. Разоренов. А.В. Уткин и др. \ФТТ 1998 №10

Скорости пластических волн : C b,33=3030 м/с, =Cb,11=Cb,22

6

Ауксетичность: изменение радиуса цилиндра из монокристалла с кубической симметрией свойств при

упругой и упругопластической деформациях во взаимно перпендикулярных направлениях:

Уравнения состояния изотропного и анизотропного материалов

$$PV = -V \frac{\partial \Phi_0(V)}{\partial V} + 2\gamma \overline{E}_k$$
 - уравнение Ми-Грюнайзена Φ_0 - потенциальная энергия

*Ē*_{*k*} - кинетическая энергия колебаний решетки

 $P = P_{\Pi}(V) + \frac{\gamma}{V} \overline{E}_{k}$ - с ростом температуры тепловое давление может превзойти холодное

$$P = \sum_{n=1}^{3} K_n \left(\frac{V}{V_0} - 1 \right) \left[1 - K_0 \left(\frac{V_0}{V} - 1 \right) / 2 \right] + K_0 \rho E$$
$$P_{ij} = \sum_{n=1}^{3} K_{nij} \left(\frac{V}{V_0} - 1 \right)^n \left[1 - K_{0ij} \left(\frac{V_0}{V} - 1 \right) / 2 \right] + K_{0ij} \rho E$$

Холодная часть УС определяется изменением взаимодействия внутри молекулы и между молекулами от объема, Тепловая часть УС определяется колебательным движением молекул.

Параметры Грюнайзена определяются процессами теплового расширения, теплопроводности, поглощением упругой волны.

 γ_{\perp} = 2,15 γ_{\Box} = 1,9.

$$\gamma_{\perp} = \frac{V}{C_{P}} \Big[(C_{11} + C_{12}) \alpha_{\perp} + C_{13} \alpha_{\square} \Big]$$
$$\gamma_{\square} = \frac{V}{C_{P}} \Big[C_{33} \alpha_{\square} + 2C_{13} \alpha_{\perp} \Big]$$

Таким образом, результаты настоящей работы показывают, что параметры термоупругих напряжений, возникающих в анизотропных материалах при их импульсном разогреве излучением, значительно отличаются от параметров напряжений в изотропных однородных материалах. В зависимости от выбранного направления в материале и условий облучения в значительных пределах может изменяться не только величина напряжений, но и их знак. Соответственно, даже при большом энерговыделении возможны варианты, когда возникающие напряжения могут быть достаточно малыми и даже близкими к нулю, А.П. Степовик Измерения коэффициента Грюнайзена некоторых анизотропных углеродных материалов ПМТФ 2005. Т. 46, №6, с. 171-179

Экспериментальные значения коэффициента Грюнайзена композита 4КМС

l, mm	Φ , Дж/см ²	$\Delta T_{\rm max}, {\rm K}$	Г
10	$42 \\ 49$	65 76	$-0,012 \\ -0.015$
15	40 53	63 82	-0,006 -0,005

4КМС - композит, полученные из углеродных волокон, с заполнением матрицы углеродом

Таблица 2

Таблица 1

Экспериментальные значения коэффициента Грюнайзена и скорости звука пиролитических графитов [10]

Материал	I		с, см/мкс		
	с	a	с	a	
УПВ-1	$0,26 \pm 0,04$	$0,\!17\pm0,\!03$	$0,\!36\pm0,\!04$	$0,53\pm0,05$	
PG3	0,3	0,2	0,36	0,61	
CAPG	$0,48 \pm 0,03$	$-0,\!99\pm0,\!15$	$0,38\pm0,05$	$2,2 \pm 0,1$	

Энергии ^{прим}кулярно ей. Примечание: а — ориентация образца вдоль плоскости осаждения углерода, с — перпенди-

САРС по структуре близок к монокристаллу графита (Т=3000К, Р=30МПа)

Анизотропия коэффициентов сжимаемости и линейного теплового расширения Zn [Киттель Ч.]

β⊥·10 ⁶ , см ² /кг	β _□ ·10 ⁶ , см ² /кг	$\beta_{\Box}/\beta\perp$	α⊥·10 ⁶ , 1/град	<i>а</i> _□ .10 ⁶ , 1/град	$\alpha_{\Box}/\alpha \bot$
0.16	1.38	8.6	14	64	4.57

Выводы:

 представленная математическая модель не имеет ограничения на величину анизотропии линейного сжатия анизотропного материала на всех этапах деформирования материала;
 сумма тензора анизотропного давления и девиатора тензора полных напряжений в области упругих деформаций составляет тензор полных напряжений;

3. анизотропия упругих постоянных и коэффициентов Грюнайзена определяет анизотропию давления в области пластических деформаций и разрушения материала в условиях сжатия;

4. анизотропное давление обеспечивает анизотропию скоростей распространения волн пластического сжатия и растяжения, определяет процесс пластического деформирования материала, процесс деформирования разрушенного материала в условиях сжатия;

5. для применения анизотропного давления при разложении тензора полных напряжений на части, отвечающие изменению объема и изменению формы необходимо и достаточно отсутствие в матрице упругих постоянных коэффициентов взаимного влияния первого и второго рода (по А.Л. Рабиновичу).

Спасибо за внимание!