

Результаты и перспективы методов спектроскопии ЯМР при исследовании мононитрида урана

В.В. Оглобличев, Ю.В. Пискунов

¹Институт физики металлов имени М.Н. Михеева УрО РАН, Екатеринбург

А.М. Потапов

²Институт высокотемпературной электрохимии УрО РАН, Екатеринбург

Фундаментальный и практический интерес

Свойства соединений актинидов существенно зависят от степени локализации 5f электронов.

Диаграмма Хилла для металлических соединений урана. $T_{\rm S}$, $T_{\rm C}$ и $T_{\rm N}$ – температуры сверхпроводящего, ферро- и антиферромагнитного переходов, ×, • – ферро-, +, о – антиферромагнитные соединения

Критическое расстояние $D_{\rm C}$ для U-U равно 3.5 Å.

При $d_{\rm U} < D_C f$ -электроны в значительной мере коллективизированы (парамагнетизм, сверхпроводимость). При $d_{\rm U} > D_C f$ -электроны в значительной мере локализованы (магнитное упорядочение, ферромагнетики, антиферромагнетики)

Основная цель данной работы – выяснить перспективы локальных методов ЯМР для анализа особенностей зарядового и спинового состояний ионов урана, а также фазового состава UN.

Метод ядерного магнитного резонанса

Сдвиг линии ЯМР: $K = \Delta \omega / \omega_0 = \mathbf{h}_{loc} / \mathbf{H}_0$

ЯМР в UN: Argonne National Laboratory, Argonne, Illinois, USA

FIG. 1. Recorder plots of the NMR line of ¹⁴N in the paramagnetic state of UN. (a) At 129°K (HNO₃ line position shown by arrow); (b) at 77°K (liquid-nitrogen line is recorded on the same chart and gives direct measurement of the Knight shift). Modulation indicated in the appropriate scale.

TABLE II.	Tem	perature	deper	ndence	e of	the	nitro	ogen
Knight shift i	n the	paramag	netic	state	of J	$J^{15}N$	and	$U^{14}N$

<i>T</i> (°K)	¹⁵ K(%) ^a	¹⁴ K(%) ^b
300	0.41 ± 0.02	0.50 ± 0.01
232	0.49 ± 0.02	0.59 ± 0.02
196	0.54 ± 0.03	0.65 ± 0.02
77	$\textbf{0.81} \pm \textbf{0.03}$	0.94 ± 0.02

Данные ЯМР на ¹⁴N

M. Kuznietz et al, PR 180, 476 (1969)

Сигнал был записан только с помощью метода "continuous-wave".

Данные ЯМР на ¹⁵N

M. Kuznietz et al, PRB 2, 3453 (1970)

Одними из выводов авторов этих работ являются:

а) ЯМР чувствителен к стехиометрии и составу примесей в образце.

б) Простая модель РККИ (Рудермана - Киттеля -Касуя - Иосиды) непригодна для описания данных.
в) Требуются дальнейшие систематические исследования совместно с данными по магнитной восприимчивости.

Рентгеноструктурный анализ образцов

Кубическая кристаллическая структура типа NaCl

Параметр элементарной ячейки: a = 4.8981(8) Å D(U-U) = 3.4635 Å

Критическое значение Хилла: D(U-U) =3.5 Å.

В литературе: J. Staun Olsen et. al, J. Appl. Cryst. **18**, 37 (1985) *a* = 4.889 Å

Эмиссионный спектральный анализ образцов с индуктивно-связанной плазмой

Методы анализа: эмиссионный спектральный

анализ с индуктивно-связанной плазмой

Прибор: оптический эмиссионный спектрометр "Optima 4300 DV " фирмы "Perkin Elmer" США

	Определяемый	Результат		Определяемый	Результат
№пп	параметр	анализа, % масс.	№ пп	параметр	анализа, % масс
1	Ag	<0,0001	35	Na	<0,002
2	Al	0.001	36	Nb	0.002
3	As	<0,003	37	Nd	<0,002
4	Au	<0,0005	38	Ni	<0,0004
5	В	<0,002	39	Р	<0,001
6	Ba	0.0002	40	Pb	<0,002
7	Be	<0,0003	41	Pd	<0,0008
8	Bi	<0,006	42	Pr	<0,0003
9	С	<0,05	43	Pt	<0,006
10	Ca	<0,0005	44	Re	<0,0009
11	Cd	<0,001	45	Rh	<0,0005
12	Ce	<0,0005	46	Ru	<0,002
13	Co	<0,0002	47	S	<0,001
14	Cr	<0,0003	48	Sb	<0,003
15	Cu	<0,0003	49	Sc	<0,0001
16	Dy	<0,0001	50	Se	<0,007
17	Er	<0,00007	51	Si	0.013
18	Eu	<0,0002	52	Sm	<0,005
19	Fe	<0,0001	53	Sn	<0,002
20	Ga	<0,005	54	Sr	0.0029
21	Gd	<0,0005	55	Та	<0,002
22	Hf	<0,0005	56	Tb	<0,001
23	Hg	<0,0009	57	Те	<0,002
24	Но	<0,00008	58	Th	<0,001
25	I	<0,04	59	Ti	<0,00004
26	In	<0,002	60	TI	<0,007
27	Ir	<0,002	61	Tm	<0,001
28	К	<0,003	62	U	99.861
29	La	<0,0004	63	V	<0,0002
30	Li	<0,0008	64	W	<0,001
31	Lu	<0,0001	65	Y	<0,00002
32	Mg	<0,0006	66	Yb	<0,00001
33	Mn	<0,00002	67	Zn	<0,00009
34	Мо	0.1208	68	Zr	<0,00006

Присутствие в исследованном образце UN малых количеств углерода, молибдена, кремния, ниобия, аллюминия.

Ядерный магнитный резонанс в нитриде урана UN в разных образцах

Образцы:

- 1. Образец 1 "Новый"
- 2. Образец 2 "Старый"

Относительный сдвиг линий образцов 1 и 2 обусловлен различием фазового состава, стехиометрии и состава примесей в образце.

Спектры ЯМР ¹⁴N

Результаты опубликованы в статьях: Ядерный магнитный резонанс и релаксация ¹⁴N в парамагнитной области мононитрида урана / В.В. Оглобличев и др. // Письма в ЖЭТФ. – 2018. – V. 108. – P. 650 – 656.

V. V. Ogloblichev, S. V. Verkhovskii, A. V. Mirmelstein, Y. V. Piskunov, A. Y. Germov, A. M. Potapov, A. F. Gubkin, A. V. Andreev // Physical Review B. – 2021. – Vol. 104. – P. 155148 - 155159.

Сдвиг линии ЯМР ¹⁴N и магнитная восприимчивость в UN

Поведение сдвига линии *K*(*T*) и магнитной восприимчивости χ(*T*) описываются зависимостями в форме закона Кюри-Вейсса:

$$K(T) = K_0 + C_{nmr} / (T - \theta_{nmr})$$

$$K_0 = 0.095(15) \%;$$

$$\theta_{nmr} = -156(12) K$$

$$\chi(T) = \chi_0 + C / (T - \theta)$$

 $\chi_0 = 3.0*10^{-4} \text{ emu/mol}$ $\theta = -170(10) \text{ K}$ $\mu_{\text{eff}} = 2.4(1) \mu_{\text{B}}$

Литературные значения: $\mu_{eff} \approx 2.6 \ \mu_B \ \mu \ |\theta| > 200 \ K$ R. Troć, J. Solid State Chem. 13, 14 (1975).

C.F. Van Doorn and P. de V. du Plessis, J. Low Temp. Phys. 28, 391 (1977).

Comparison of Magnetic Parameters for UN with χ_0 Excluded

Reference	Temperature range, K	Weiss constant θ , K	μ _p , Bohr magnetons	T _N , K
his investigation	100 -500		2.89	53.1 ± 0.2
rzebiatowski et al. ¹⁰	83 - 290	-310	3.08	
Didchenko and Gortsema ¹¹	75 -370		_	
Albutt et al. ¹²	100 -300	-325	3.11	-
Dhmichi <i>et al.</i> ¹⁴	T < 600	-247	2.93	52
Dhmichi et al. ¹⁴	T > 600	-383	3.20	52
roć ⁸	T < 450	-250	2.93	53 ± 1

Параметрическая зависимость сдвига линии ЯМР от магнитной восприимчивости *K*(χ)

$$K(T) = K_0 + K_f(T) = K_0 + z \cdot H_f \cdot \chi_f(T) / \mu_B N_A,$$

 H_f - имеет физический смысл эффективного сверхтонкого поля, создаваемого на ядре азота электронами 5*f* оболочки одного из соседних (всего их *z* = 6) атомов урана.

 $K_f = (3.00 \pm 0.05) \times \chi_f$

 $H_f = 2.6(2) \text{ kOe}/\mu_B$

Важным является тот факт, что эти данные получены на одном и том же образце.

Сдвиг линии ЯМР азота $K_f(T)$ обусловлен магнетизмом 5*f* электронов урана: $K_f(T) \propto \chi_f(T)$.

Спин-решеточная релаксация

Спин-решеточная релаксация ядерного спина определяется двумя основными вкладами:

 $(T_1^{-1}) = (T_1^{-1})_K + (T_1^{-1})_f$

Вклад $(T_1^{-1})_K$, обусловленный контактным взаимодействием электронов проводимости с ядерными спинами.

Вклад $(T_1^{-1})_f$, обусловленный флуктуациями локальных полей, которые связаны с флуктуирующим спиновым моментом *f*-электронов.

Скорость спин-решеточной релаксации ядер 14 N T_1^{-1} не описывается в моделях полностью локализованных или делокализованных электронов 5*f* оболочки урана.

В модели с флуктуирующим валентным (и, соответственно, спиновым) состоянием магнитного иона актинида энергию спиновых флуктуаций $\Gamma_{\rm ЯМР}(T)$ можно записать как

 $\Gamma_{\rm NMR}(T) = (2\gamma_n^2 k_{\rm B} \cdot H_f/3\mu_{\rm B} \cdot N_A) \cdot K_f \cdot (T_1)_f \cdot T$

ЯМР в PuO₂: H. Yasuoka, H. Chudo *et al.*,Science 336, 901 (2012).

First observation of²³⁹**Pu NMR** –A new frontier for the physics and chemistry of actinide compounds

H. Chudo^{1,2)}, H. Yasuoka^{1,2)}, G. Koutroulakis²⁾, S. Richmond²⁾, E. D. Bauer²⁾, J. D. Thompson²⁾, and D. L. Clark²⁾ 1) R.G. for Mechanical Control of Materials and Spin Systems, ASRC, JAEA 2) Los Alamos National Laboratory

Успешное детектирование сигнала ЯМР ¹⁴N в образцах мононитрида урана показало крайне высокую чувствительность метода для решения вопросов координационной химии. Несомненным достоинством метода является объемный характер данных о структурном состоянии исследуемого таблетированного нитридного топлива.

Предлагается:

1. Исследовать методами спектроскопии ЯМР ^{14,15}N структурное и магнитное окружение атомов азота, а также фазовое состояние мононитридов актинидов в зависимости от синтеза и эксплуатации в условиях радиационного воздействия и температуры.

2. Исследовать структурное состояние актинида, фазовый состав массивных образцов нитридного/оксидного топлива на основе плутония и урана методами спектроскопии ЯМР на ядрах изотопов 239-плутония и 235-урана.

Заключение

Авторы выражают благодарность <u>А.В. Мирмельштейну</u> (ФГУП "РФЯЦ-ВНИИТФ им академика Е.И. Забабахина") за обсуждение физики соединений на основе f-элементов.

Методами ЯМР на ядре ¹⁴N также исследован магнитный порядок и спиновая динамика 5*f* электронов урана. Показано, что спектры ЯМР на ядре ¹⁴N в магнитоупорядоченной фазе объясняются в рамках модели антиферромагнитного упорядочения типа *I*, соответствующего 1*k*-структуре при наличии доменной структуры. Установлено, что в магнитном поле 92,8 кЭ наблюдается разный объем доменов, в которых магнитные моменты урана лежат вдоль и перпендикулярно направлению магнитного поля.

Обнаружено, что при низких температурах скорость спинрешеточной релаксации описывается законом Корринги. Это свидетельствует о формировании ферми-жидкостного состояния. Показано, что в парамагнитной области зависимость энергии спиновых флуктуация близка к зависимости $\Gamma(T) \propto T^{0.5}$, характерной для концентрированных систем Кондо выше температуры формирования когерентного состояния. Полученные в работе данные, крайне важны для объяснения магнитных и транспортных свойства соединений на основе *f*электронных элементов.