

XVI международная конференция «ЗАБАБАХИНСКИЕ НАУЧНЫЕ ЧТЕНИЯ»

Критические и нейтронно-активационные benchmark-эксперименты с размножающими системами из металлического плутония без отражателя для валидации ядернофизических данных и компьютерных кодов, моделирующих перенос нейтронов

<u>Юдов А.А.,</u> Адарченко В.А., Хмельницкий Д.В., Андреев С.А., Вайвод А.А., Бесов С.С., Костенко И.И., Сергина Д.И.

Введение

Существуют проблемы в описании совокупности интегральных экспериментов с металлическим плутонием. При этом наибольший интерес представляют эксперименты с «голыми» (без отражателя) плутониевыми размножающими системами (PC). В настоящее время возможности повышения точности нейтронных констант путем их непосредственного измерения в дифференциальных экспериментах исчерпаны, и интегральные эксперименты на критических сборках являются единственным способом совершенствования константного обеспечения. В ФГУП «РФЯЦ-ВНИИТФ им. академ. Е.И. Забабахина» на стенде для критических сборок (СКС) ФКБН-2 были проведены прецизионные интегральные критические, корреляционные и нейтронно-активационные эксперименты с различными размножающими системами (РС) из металлического плутония без отражателя с целью получения новых и уточнения имеющихся экспериментальных данных. экспериментальных данных.

Нейтронно-активационные эксперименты с металлическим плутонием были проведены РФЯЦ-ВНИИТФ впервые. Эксперименты заключались в облучении различных типов нейтронно-активационных детекторов (ДНА), компактной РС, выведенной на небольшой уровень мощности (~15 Вт). Ценность указанных экспериментов заключается в том, что их результаты позволяют определить недостатки в константном описании нейтронного спектра в различных областях энергии.

Детали из плутония

РФЯЦ-ВНИИТФ РОСАТОМ

Диск из плутония в альфа-фазе герметично упакован в штампованный чехол из нержавеющей стали толщиной 0,2 мм и имеет толщину 4,5 мм, диаметр 120 мм

Сферические детали из плутония в дельта-фазе на которые гальваническим путем нанесено покрытие из никеля толщиной 0,1 мм

Сферические детали из плутония в альфа-фазе упакованы в штампованные чехлы из нержавеющей стали толщиной 0,2 герметично соединённые сварным швом по окружности основания каждой детали

Цилиндрические РС

верхняя часть из 12 дисков из плутония

диски из алюминия толщиной 2 мм с отверстиями под установку ДНА и термопары

нижняя часть из 5 дисков из плутония

Внешний вид цилиндрической РС369-1 из плутония

Сферические РС

Внешний вид РС394

Внешний вид РС395-1

Комбинированные PC из плутония в альфаи дельта фазе

Данная работа обусловлена необходимостью уточнения данных и является дополнением ранее выполненных на СКС ФКБН-2 исследований с близкой по составу РС305 *.

Полученные по программе ПРИЗМА-Д результаты расчетов К_{эф} для критического состояния РС305 показали занижение расчетных значений по сравнению с экспериментом на 0,6...0,7% для констант БАС и на 0,35...0,5 % для констант ENDF BVI, что соответствует

$$\Delta K = K_{\Im \varphi}^{P} - K_{\Im \varphi}^{\Im} = (6,5\pm1,2) \cdot 10^{-3} (2\sigma)$$
 для констант БАС и

 $\Delta K = (4,2\pm1,2) \cdot 10^{-3}$ (20) для констант ENDF BVI.

* Оценка погрешности расчетов времени жизни мгновенных нейтронов в системе из металлического плутония / Ершова Л.С., Хмельницкий Д.В., БесовС. С. и др. // Атомная энергия. - 2013. - Т. 114, вып. 3. - С. 165-168.

Комбинированные РС из плутония в альфа- и дельта фазе

верхняя часть из семи дисков, сложенных друг на друга, полусфер из плутония в δ-фазе.

нижняя часть из пяти полусфер из плутония в б-фазе

Внешний вид комбинированной РС418

Технология проведения экспериментов

Внешний вид собранной сферической РС395 и аппаратуры в реакторном зале СКС ФКБН-2 **8**

Измерение критического зазора

На первом этапе проводятся «нулевые» измерения, в которых все детали PC из делящегося материала заменяются деталями из инертных материалов той же формы с макроскопическими сечениями рассеяния и поглощения, близкими к соответствующим величинам для ДМ (например, сталь, медь, обедненный уран). В «нулевых» измерениях определяется скорость счета нейтронов D₀, покидающих инертный макет PC установленным в нем нейтронным источником (например, плутоний-бериллиевым) за вычетом фона.

На втором этапе проводится ручная сборка двух частей РС с делящимися материалами. В процессе дистанционного пошагового сближения частей системы для серии значений зазора H определяется скорость счета D нейтронов, выходящих из РС, за вычетом фона, и вычисляется коэффициент умножения нейтронов Q по отношению к используемому источнику $Q = D/D_0$.

Состояние запаздывающей критичности (величина критзазора $H_{\kappa p}$) определяется путем экстраполяции в ноль зависимости обратного коэффициента умножения $Q^{-1} = D_0/D$ от зазора H

Корреляционные измерения

В корреляционных измерениях определяется зависимость постоянной спада мгновенных нейтронов от величины зазора между частями PC a(H) и проводится определение тангенса угла наклона $\partial a/\partial H$ экспериментальной зависимости для PC, находящейся вблизи критического на запаздывающих нейтронах состояния. Величина $\partial a/\partial H$ с точностью до постоянного коэффициента определяет среднее время жизни мгновенных нейтронов в PC.

Корреляционные измерения проводятся на СКС ФКБН-2 с помощью аппаратурно-программного комплекса, который работает в счётном режиме и состоит из детектирующей части, включающей в себя набор пластиковых сцинтилляционных детекторов, а также систему формирования сигналов и вычислительной части – ЭВМ с измерительной высокоскоростной процессорной-платой и программным обеспечением, специальной разработки.

Корреляционные измерения

По зарегистрированным сигналам рассчитывались автокорреляционные функции детектора №1 (01-01) и детектора №2 (02-02), взаимно корреляционная функция двух детекторов №1 и №2 (01-02). Расчет производится по следующей формуле:

$$\tilde{N}_{xy}(\tau_m) = \sum_{K=1}^{K} \sum_{n=0}^{M-m-1} x(t_n + \tau_m) y(t_n)$$

Здесь M – число каналов одном блоке, K – полное число обработанных блоков за время измерения, m = 0...M-1, $\tau_m = m\Delta t$, $\Delta t = 1 \ hc$ - ширина отдельного канала, $t_n = n\Delta t$.

Общая схема корреляционных измерений с плутониевой РС

Вид сверху

Метод нейтронно-активационных измерений

Метод заключается в облучении нейтронно-активационного детектора в нейтронном поле исследовательской ядерной установки, измерении активности образовавшегося радионуклида, расчёте параметров нейтронного поля с использованием аттестованных характеристик детектора и справочных данных о ядерно-физических константах радионуклидов и нейтронных реакциях. Первичной экспериментально определяемой величиной в данном методе является число взаимодействий (реакций), нормированное на одно ядро изотопа-мишени, - активационный интеграл Q (АИ):

$$Q = \int_0^\infty \Phi(E) \cdot \sigma(E) dE,$$

где $\Phi(E)$ - энергетическое распределение флюенса нейтронов, $\sigma(E)$ - микроскопическое сечение реакции.

Проводилось облучение до десяти типов ДНА: Al, Au, Cu, Mg, In, Ti, Nb, Ni, F, Sc, размещенных в центральной области и на поверхности PC, выведенной на небольшой уровень мощности.

Детекторы представляли собой металлические диски, изготовленные из особо чистого материала. Диаметр дисков составляет ~20 мм, толщина от 0,02 до 2 мм. Измерение активности облученных ДНА проводилось с использованием полупроводникового детектора из особо чистого германия с высоким энергетическим разрешением.

Ядерно-физические и технические характеристики ДНА

п/п	Реакция активации	Содерж. изотопа, %	Область чувств.	T _{1/2}	Е _γ , МэВ (выход на 100 распадов)	Размеры, мм
1	¹¹³ In(n,γ) ^{114m} In	4,28	0,025 эВ	49,51 дня	0,190(17)	Ø20x1 Ø20x2
2	$^{197}\mathrm{Au}_{79}(n,\gamma)^{198}\mathrm{Au}_{79}$	100	4,9 эВ	2,696 дня	0,412(95)	Ø10x0,02
3	⁶³ Cu(n,γ) ⁶⁴ Cu ⁶⁵ Cu(n,2n) ⁶⁴ Cu	69,17 30,83	579 эВ	12,70 час	0,511(38)	Ø20x0,2
4	$^{45}\text{Sc}_{21}(n,\gamma)^{46}\text{Sc}_{21}$	100	7,17 кэВ	83,83 дня	0,889(100), 1,120(100)	Ø20x0,3
5	¹¹⁵ In(n,n') ^{115m} In	95,72	>1,2 МэВ	4,486 час	0,336(47)	Ø20x1 Ø20x2
6	⁴⁷ Ti(n,p) ⁴⁷ Sc ⁴⁸ Ti(n,np) ⁴⁷ Sc	7,3	>2,2 МэВ	3,35 дня	0,159(73)	Ø20x2
7	⁵⁸ Ni(n,p) ⁵⁸ Co	68,27	>2,6 МэВ	70,78 дня	0,81(99)	Ø20x2
8	$^{24}Mg(n,p)^{24}Na_{11}$	78,99	>7,2 МэВ	15,02 час	1,369(100)	Ø20x2
9	27 Al(n, α) ²⁴ Na	100	>7,4 МэВ	15,02 час	1,369(100)	Ø20x2
10	⁹³ Nb(n,2n) ^{92m} Nb	100	>10,5 МэВ	10,15 дня	0,934(99)	Ø20x2
11	¹⁹ F(n,2n) ¹⁸ F	100	>12,8 МэВ	109,8 мин	0,511(194)	Ø20x1 Ø20x2

Метод нейтронно-активационных измерений

Расчет отношения числа реакций к количеству ядер для различных ДНА – *Q* проводился по следующим формулам:

$$Q = \frac{N}{M \cdot T_l} \cdot K_1 \cdot K_2 \cdot K_3 \cdot A_{pun} \cdot K_a \cdot K_h \cdot K_d \cdot K_s$$

где N – чистая площадь пика, имп.;

 T_l – живое время набора в секундах;

М – масса активируемого элемента, г;

 K_1 – коэффициент поправки на распад нуклида во время измерения T_l ;

 K_2 – коэффициент поправки на распад нуклида со времени конца облучения до начала измерения t_{ox_A} ;

 K_3 – коэффициент, учитывающий распад во время облучения образца $t_{oбл.}$; $A_{pun.}$ – расчетная константа;

K_a – поправка на самопоглощение гамма-квантов в материале ДНА;

K_h – поправка на отклонение от штатной геометрии градуировки эффективности регистрации фотонов ППД;

 K_d – поправка на размеры ДНА, отличающегося по диаметру от точечного источника; K_s – поправка на каскадное суммирование, рассчитывалась с использованием программы "Nuclide Master" методом Монте-Карло с использованием оцененных ядерных данных ENSDF.

Погрешность абсолютных измерений активационных интегралов определялась по аттестованной методике и составила от ~4 до ~8 % (2 σ).

Работа установки на мощности по облучению активационных детекторов

После вывода установки на мощность управление установкой осуществлялось путем поэтапного сближения частей с шагом не более ~ 0,003 мм, что соответствует вводу реактивности ~ 0,01 β_{3d} .

После каждого ввода реактивности система выходила на большой период разгона, что приводило к незначительному увеличению мощности и плавному разогреву АЗ, что приводило к последующему гашению мощности вследствие теплового расширения делящегося материала.

Разогрев АЗ на температуру $\Delta T \sim 1,0-1,5$ °C соответствовал отрицательному вводу реактивности ~ 0,01 $\beta_{3\phi}$, что позволяло компенсировать введенную ранее положительную величину реактивности без разведения частей РС. Указанный цикл составлял приблизительно 10-15 мин.

За час работы на мощности температура в центре АЗ увеличивалась на 8-10 °С с учётом принудительного воздушного охлаждения РС.

Работа установки на мощности по облучению активационных детекторов

График изменения мощности РС395-1 при облучении ДНА

График изменения температуры внутри и снаружи РС395-1 при облучении ДНА

Результаты критических экспериментов

1 Цилиндрические РС

Наименование РС (краткое описание)	Н _{кр} , мм (2σ)	<u>∂α</u> ∂н′мкс-¹/мм, (2σ)	∂р/∂Н, β/мм (2σ)
PC364(8Pu+8Pu)	4,04±0,14	-	-
PC365 (4Pu+12Pu)	5,86±0,10	-1,30±0,02	-
PC368 (5Pu+11Pu)	5,60±0,14	-	-
PC369-1 (5Pu+12Pu)	3,84±0,08	-1,805±0,039	2,74±0,16

2 Сферические РС

Наименование РС (краткое описание)	Н _{кр′} мм (2σ)	^{∂α} / _{∂H} ,мкс ⁻¹ /мм (2σ)	∂р/∂Н, β/мм (2σ)
PC395	$0,41 \pm 0,06$	-1,970±0,047	2,46±0,96
PC394	3,91±0,12	-1,720±0,028	2,09±1,2
PC395-1	1,86±0,06	- 1,719±0,007	1,91±0,06

3 Комбинированные РС

Наименование РС (краткое описание)	Н _{кр} , мм (2σ)	<u>∂α</u> ∂ <i>н</i> ,мкс ⁻¹ /мм (2σ)	∂р/∂Н, β/мм (2σ)
PC417	5,16±0,08мм	-1,335±0,023	1,85±0,08
PC418	3,32±0,06мм	-1,640±0,016	2,16±0,08

Температурный коэффициент реактивности

Эксперименты проводились в режиме стабилизации температурного режима плутония. Контроль температуры осуществлялся путем установки термопар в центральную область и на внешнюю поверхность РС. По результатам экспериментов был проведен расчет температурного коэффициента реактивности.

Результаты оценки $\frac{\partial \rho}{\partial T}$ и $\frac{\partial H_{\kappa p}}{\partial T}$ (10) для плутониевых PC

Комбинированная РС417	$\frac{\partial \rho}{\partial T'} \frac{\beta_{\vartheta \varphi}}{^{\circ} C}$	- 0,0151±0,0036
	$\frac{\partial H_{\rm Kp}}{\partial T}$, $\frac{\rm MM}{\rm °C}$	- 0,0081±0,0019
Сферическая РС395	$\frac{\partial \rho}{\partial T'} \frac{\beta_{\ni \Phi}}{\circ C}$	-0,0184±0,0006
	$\frac{\partial H_{\mathrm{Kp}}}{\partial T}$, $\frac{\mathrm{MM}}{\mathrm{°C}}$	- 0,0074±0,0002
Цилиндрическая РС369-1	$\frac{\partial \rho}{\partial T'} \frac{\beta_{\ni \Phi}}{\circ C}$	-0,0223±0,0042
	$\frac{\partial H_{\mathrm{Kp}}}{\partial T}$, $\frac{\mathrm{MM}}{\mathrm{°C}}$	- 0,0082±0,0015

Результаты экспериментов по облучению ДНА для цилиндрической РС369-1

Схема размещения ДНА

ДНА размещались следующим образом: в центральное отверстие каждого алюминиевого **ДИСКА** были установлены ДНА ИЗ никеля, далее в 8 периферийных отверстий каждого диска были установлены следующие ДНА: Ni, Ti, In, Al, Mg, Nb, F и пакетом в одно отверстие набор тонких ДНА из Au, Cu и Sc. Облучение средней проводилось на мощности ~14,5 Вт

Результаты экспериментов по облучению ДНА для цилиндрической РС369-1

дна	Реакция активации	Q _{центр} р/я (%, 2σ)	Q _{поверхность} р/я (%, 2σ)	К	δΚ, % (1σ)
Au	¹⁹⁷ Au(n,γ) ¹⁹⁸ Au	2,649·10 ⁻¹² (3,4)	1,022·10 ⁻¹² (7,9)	2,592	1,79
Cu	⁶³ Cu(n,γ) ⁶⁴ Cu+ ⁶⁵ Cu(n,2n) ⁶⁴ Cu	3,406·10 ⁻¹³ (6,6)	1,185·10 ⁻¹³ (6,5)	2,874	0,52
Sc	⁴⁵ Sc(n,γ) ⁴⁶ Sc	1,716·10 ⁻¹³ (8,5)	6,764·10 ⁻¹⁴ (8,6)	2,537	1,94
	¹¹³ ln(n,γ) ^{114m} ln	6,014·10 ⁻¹² (3,7)	2,302·10 ⁻¹² (6,0)	2,613	1,53
In	¹¹⁵ ln(n,n') ^{115m} ln	4,469·10 ⁻¹² (8,2)	1,813·10 ⁻¹² (5,4)	2,465	0,92
Ti	⁴⁷ Ti(n,p) ⁴⁷ Sc+ ⁴⁸ Ti(nn',p) ⁴⁷ Sc	4,338 ·10 ⁻¹³ (4,5)	1,734 ·10 ⁻¹³ (5,5)	2,502	1,45
Ni	⁵⁸ Ni(n,p) ⁵⁸ Co	2,396·10 ⁻¹² (3,4)	1,013·10 ⁻¹² (3,4)	2,365	0,50
Ni центр		2,995·10 ⁻¹² (3,9)	1,235·10 ⁻¹² (3,4)	2,425	0,61
Mg	²⁴ Mg(n,p) ²⁴ Na	3,914·10 ⁻¹⁴ (5,8)	1,642·10 ⁻¹⁴ (5,8)	2,384	1,27
AI	²⁷ Al(n,α) ²⁴ Na	1,875·10 ⁻¹⁴ (6,7)	8,088·10 ⁻¹⁵ (5,2)	2,318	1,74
Nb	⁹³ Nb(n,2n) ^{92m} Nb	1,244·10 ⁻¹⁴ (3,6)	5,326·10 ⁻¹⁵ (3,6)	2,336	0,33
F	¹⁹ F(n,2n) ¹⁸ F	2,388·10 ⁻¹⁶ (4,9)	9,913·10 ⁻¹⁷ (5,1)	2,409	1,23
					20

Активационные интегралы измерены с относительной погрешностью от 3,4 до 8,6 % (20)

Результаты экспериментов по облучению ДНА для сферической РС395-1

Схема размещения ДНА

В первом эксперименте было облучено три типа ДНА (Al, Mg, F,), во втором – пять типов ДНА (Au, Cu, Ti, Ni, Sc)

Результаты экспериментов по облучению ДНА для сферической РС395-1

ДНА	Реакция активации	Q, р/я	δQ, % (2σ)	K
Au№154	197 (11 (12)) 198 (11	3,93·10 ⁻¹³	5,69	1,02
Au№156	MAu(Π,γ) ^M Au	3,84·10 ⁻¹³	5,69	
Cu№01	$63C_{11}(n,y)64C_{11}$	6,83·10 ⁻¹³	5,31	1 01
Cu№04	^{os} Cu(π,γ) ^{os} Cu	6,79·10 ⁻¹³	5,31	1,01
Sc№б/н	${}^{45}Sc(n,\gamma){}^{46}Sc$	3,78·10 ⁻¹³	5,57	
TiNº1	$47 T; (n, n) 47 C_{2}$	9,33·10 ⁻¹³	5,04	1.00
TiNº2	² H(n,p) ² SC	9,30·10 ⁻¹³	5,04	1,00
MgN <u></u> 982	$24 M_{\alpha}(r_{12},r_{2})^{24} M_{\alpha}$	7,94·10 ⁻¹⁴	4,59	0,99
MgN <u>0</u> 88	-wig(n,p)-wa	8,01.10-14	4,59	
AlNºAЛ	$27 \Lambda 1(n \alpha) 24 NIa$	3,84.10-14	4,66	0,99
A1Nº2-12	-AI(II,U)-INA	3,86.10-14	4,66	
FN⁰03	19E(n 2n)18E	5,24·10 ⁻¹⁶	5,22	1,05
FN⁰02	-^1'(11,211) ^{2°} F	5,01·10 ⁻¹⁶	5,22	
Ni№55	$58Ni(n n)58C_{2}$	5,15·10 ⁻¹²	4,21	0,99
NiN⁰26	ni(ii,p) ²⁰ C0	$5.19 \cdot 10^{-12}$	4.21	

Активационные интегралы измерены с относительной погрешностью ²² от 4,2 до 5,7 % (20)

Заключение

Представлены результаты экспериментальных работ ПО комплексному исследованию нейтронно-физических характеристик цилиндрических, сферических и комбинированных размножающих систем из плутония без отражателя.

В ходе работ были определены следующие параметры РС:

- значение критического зазора между частями PC *H*_{кр.зап} с погрешностью определения не более 0,03 мм (1о);

- характеристики переходных нейтронных процессов - постоянные спада мгновенных нейтронов а и $\frac{\partial \alpha}{\partial \mu}$ с погрешностью не более 0,5 % (1 σ);

- постоянная Росси α_R, критический зазор на мгновенных нейтронах $H_{\text{кр.мгн'}}$ «вес» регулирующего элемента $\frac{\partial \rho}{\partial \mu}$;

- числа реакций и активационные интегралы ДНА, размещенных в центральной части и на поверхности РС;

- температурный коэффициент реактивности $\frac{\partial \rho}{\partial \tau}$ для «голых» сферических и цилиндрических плутониевых систем.

По результатам проведенных экспериментов были созданы бенчмарк-модели цилиндрической и сферической расчетные плутониевых РС.

Спасибо за внимание