

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ ОПРЕДЕЛЕНИЯ ОСТАТОЧНОЙ ЭНЕРГИИ ПРЕТЕРПЕВШИХ ВЗРЫВНОЕ ОБЖАТИЕ МЕТАЛЛИЧЕСКИХ ШАРОВ

<u>Д.Т. Юсупов</u>, А.Ю. Гармашев, Д.П. Кучко А.А. Дегтярёв, А.В. Петровцев, Д.М. Шалковский, А.Ф Опрышко

29.05.2023 г.

XVI Забабахинские научные чтения

Юсупов Дмитрий Тагирович

Цель и задачи

Определение остаточной тепловой энергии с помощью твердотельного калориметра, выполненное непосредственно после взрывного обжатия шаров из конструкционных материалов, представляет научный и практический интерес с точки зрения изучения структурных и прочностных свойств материала шара в условиях кумуляции энергии, различных способов ввода энергии в исследуемый образец, а также учета уровней диссипативных потерь.

Работа проведена с целью проверки и калибровки уравнений состояния и в их составе кинетических моделей сдвиговых и откольных прочностей.

Задачи работы:

- калибровка твердотельного калориметра;
- измерение температуры претерпевших взрывное обжатие шаров и оболочек;
- определение тепловой энергии, приобретенной шарами и оболочками;
- получение расчетных и сравнение с экспериментом.

Конструкция калориметра

Полуэмпирическая модель калориметра

 $\Delta T_i = \frac{\Delta Q_i}{m_i \cdot c_i}$ (2) где, q – удельный тепловой поток (поток

где, q – удельный тепловой поток (поток тепла за единицу времени через единицу сечения),

 λ – коэффициент теплопроводности,

Т – температура, ⁰С,

 ΔQ – изменение теплосодержания тела. Уравнение (1) используется обычно в виде $q = \frac{\Delta T}{R}$ (3)

где R – термическое сопротивление.

При больших временах регистрации, когда система находится в тепловое равновесие, сигналы с термопар выходят на одну расчётную асимптотическую кривую, интегральное приращение температуры шара после взрывного обжатия на момент попадания его в калориметр определяется простой формулой $\Delta T_0 = \Delta T_2(t_i)_{эксп}/\alpha$ 4

Калибровка калориметра

<u>№</u> опыта	Мате- риал	Масса, [кг]	с _р [кДж/ (кг гр)]	$ \Delta t_0 \\ [°C] $	Δt_{3750} [°C]	α	α±Δα (P=0.95)	Примечание	МУФЕЛЬНАЯ ПЕЧЬ ШАР ТЕРМОПАРА ИЗМЕРЕНИЯ		
1	вода	0,25	4,18	71	26,2	0,369	0,369		Температуры керна в печи		
2	-	1,221	0,385	145	31	0,214	0,219 ±0,004	Время попадания в калориметр не более 4 с			
3		1,221	0,385	160	35	0,219					
4		1,2202	0,385	196,32	42,98	0,219			Вхолной Блок		
5	M1	1,2202	0,385	186,58	40,47	0,217					
6		1,2202	0,385	191,93	43,6	0,227			АЦП 16 Бит		
7		1,2202	0,385	186,03	40,77	0,219			КАПОРИМЕТР		
8		1,2202	0,385	120,69	26,75	0,222			ТЕРМОПАРЫ КАЛОРИМЕТРА (7 шт.)		
9		1,2202	0,385	198,88	43,08	0,217		Время попадания в калориметр составляет 30 с	ИЗМЕРИТЕЛЬНАЯ ПЛА		
10	M1	1,2202	0,385	211,8	44,91	0,212	0.213 ±0,004		B COCTABE APM		
11		1,2202	0,385	243,39	51,85	0,213					
12		1,2202	0,385	189,98	40,25	0,212					
13		1,0615	0,465	152,0	32,0	0,211	0,232 ±0,006	Время попадания в калориметр не более 4 с	866		
14	-	1,0615	0,465	157,0	37,5	0,239					
15		1,0615	0,465	148,0	34,0	0,230					
16		1,0615	0,465	114,0	26,0	0,228					
17	ст.3	1,0615	0,465	117,0	27,0	0,231					
18		1,0608	0,465	189,5	44,76	0,236					
19		1,0608	0,465	154,3	36,51	0,237					
20		1,0608	0,465	170,6	40,24	0,236					
21		1,0608	0,465	167,8	39,69	0,237					
22		1,0608	0,465	172,7	41,11	0,238			64 <mark>17 i i i i i i i i i i i i i i i i i i i</mark>		
23	12X18H10T	1,06485	0,505	168,9	38,5	0,228	0,228				

Постановка взрывных экспериментов

а) Экспериментальный узел без "шубы".

б) Экспериментальный узел с "шубой"

Экспериментальные результаты

Опыт №	Материал шара; оболочки	Масса шара; оболочки, [кг]	Начальный диаметр шара, [мм]	Тип ВВ	Наличие чугунной «шубы»	Удельная тепло- емкость, [кДж/(кг гр)]	ΔТ ₀ , [гр.С]	ΔQ, кДж	ΔQ/m	N, шт.	Примечани е	
2907	12X18H10T	1,006485	63,70	Тип 1, 8 мм	+	0,505	154	78,3	77,8	96		
1410	12X18H10T	1,0519	63,40	Тип 1, 8 мм	+	0,505	191	101,5	96,5	96		
2003	30ХГСА	1,0507	63,70	Тип 1, 8 мм	+	0,461	266	128,8	122,6	96		
2607	30XFCA	1,0491	63,70	Тип 1, 8 мм	+	0,461	244	118,0	112,5	96		
2306	ст.3	1,0608	63,70	Тип 1, 8 мм	+	0,465	234	115,4	108,8	96		
0111	м1	1,1849	63,40	Тип 1, 8 мм	+	0,385	219	99,9	84,3	96	Ē	
2706	м1	1,5954	70,00	Тип 2, 5 мм	-	0,385	99	60,8	38,1	96	API	
2112	12X18H10T	1,28686	69,74	Тип 3,5 мм	+	0,505	129	83,8	65,1	2	Ξ	
1211	12X18H10T	0,25932	40,00	Тип 3, 20 мм	+	0,505	397	52,0	200,5	12		
1911	Армко железо	0,26014	40,00	Тип 3, 20 мм	+	0,452	497	58,5	224,9	12		
1211	12X18H10T	0,755	69,66	Тип 2, 2,5 мм	-	0,505	52	19,8	26,3	96		
2604	12X18H10T	1,27423	69,74	Тип 2, 5 мм	-	0,505	102	65,6	51,5	96		
2706	30XFCA	1,27856	69,74	Тип 2, 5 мм	+	0,492	162	101,9	79,7	96		
2806	30XFCA	1,27801	69,74	Тип 2, 5 мм	-	0,492	139	87,4	68,4	96		
2707	30ХГСАк	1,2787	69,74	Тип 2, 5 мм	+	0,492	177	111,3	87,1	96		
0108	30ХГСАк	1,27698	69,74	Тип 2, 5 мм	-	0,492	148	93,1	72,9	96		
1910	12X18H10T	1,2703	69,74	Тип 2, 5 мм	+	0,505	125	80,2	63,1	96		
0411	Армко железо	1,2559	70,00	Тип 2, 5 мм	+	0,460*	256	157,4	125,4	96	ЧКИ	
1502	12X18H10T	0,660	70,00	Тип 2, 2,5 мм	-	0,505	57	19,0	28,8	96	БОЛС	
2303	12X18H10T	0,89316	69,72	Тип 2, 2,5 мм	-	0,505	78	35,2	39,4	384	0	
1907	12X18H10T	0,82685	69,75	Тип 2, 2,5 мм	-	0,505	77	32,3	39,0	384		
2007	30ХГСА	0,81515	69,75	Тип 2, 2,5 мм	-	0,461	91	34,2	42,0	384		
0208	30ХГСАк	0,77547	69,75	Тип 2, 2,5 мм	-	0,461	94	33,6	43,3	384		

Экспериментальные результаты

Для иллюстрации результатов построены диаграммы удельной тепловой энергии шаров при различных режимах нагружения, в зависимости от количества точек инициирования, количества и типа BB, наличия тяжелого корпуса – «шубы», фазового состояния.

Моделирование экспериментов со стальными оболочками

Неоднородности на поверхности оболочки, образовавшиеся после работы с N = 96 Rвв=40 мм

Состояние стальных оболочек при обжатии в постановке разным количеством N. Показаны моменты времени: начало движения, фокусировки откольного слоя, остановки. Градиентная заливка по плотности

Моделирование экспериментов со стальными оболочками

Расчет опыта по обжатию стальной оболочки в герметизирующих чехлах (*N*=96, *m*_{сбор}=1274,48 г). Показаны моменты времени: начало движения, фокусировки откольного слоя, остановки

Заключение

Поставленные задачи выполнены.

Полученные экспериментальные данные как по калибровке так и для взрывных систем демонстрируют зависимости определения приобретенной шарами и оболочками из различных металлов энергии от свойств материала шара при идентичном режиме их взрывного нагружения и других условий, влияния исходных прочностных свойств, от количества «закачанной» энергии.

Такая интегральная информация важна для оценки влияния свойств материалов на характер кумуляции энергии в сходящихся волнах для калибровки физических моделей и расчетных программ.

При проведении расчетов влияние эффектов от системы инициирования необходимо учитывать при определении изменения внутренней энергии при обжатии шаров и оболочек.

Калориметрические измерения с одинаковым материалом шара, но при варьировании условий его взрывного нагружения, а именно: числа точек инициирования детонации – *N*, сферического слоя ВВ при свободном разлете ПВ, при сдерживании их разлета тяжелым корпусом, позволили получить важную сравнительную информацию по динамической эффективности моделей сравниваемых систем.

Благодарю за внимание!