

Объединенный институт высоких температур ФИЦ Химической Физики РАН им. Н.Н.Семенова ФИЦ Проблем Химической Физики и МХ РАН НИЯУ МИФИ Москва, Черноголовка

## ОСОБЕННОСТИ УДАРНОГО СЖАТИЯ НАНОРАЗМЕРНОГО НИКЕЛЯ

FEATURES OF SHOCK COMPRESSION OF NANOSIZED NICKEL

А.Ю. Долгобородов Т. А. Ростилов, С.Ю. Ананьев, В. С. Зиборов, В.В. Якушев, М.Л. Кусков

#### Физико-химические превращения веществ при ударноволновых воздействиях (ударно-индуцированные реакции)







Воскобойников И.М. 1934 – 2010

Фортов В.Е. 1946 – 2020

Канель Г.И. 1944 – 2021

#### HDRM высокоплотные реакционные материалы (High Density Reactive Materials)





Penetration Behavior of High-Density Reactive Material Liner Shaped Charge // 2019 Materials 12(21):3486 H.Guo et al.

HDRM обладает прочностью алюминиевых плотностью мягкой сплавов И низкоуглеродистой стали, что делает материал идеальной заменой обычной стали в снарядах. До выстрела компоненты оболочки боеприпаса остаются инертными. Зато при механическом или тепловом воздействии осколки быстро сгорают сильном или взрываются, высвобождая дополнительную энергию вдобавок кинетической. К Поражающая способность боеголовок с HDRM, может увеличиваться в несколько раз по сравнению с традиционными боеприпасами

AI + Ni > NiAI + 1,38 кДж/г (7,16 кДж/см<sup>3</sup>)

ТНТ - 4,18 кДж/г (6,86 кДж/см<sup>3</sup>)



17 Time resolved stress traces recorded in a Ni+Al mixture at two impact velocities *v*. Pressures in excess of those expected for an inert material were observed in both experiments shown. The expected inert pressure was  $\sim$  21 GPa for the closed and open data set, as shown by the dashed line (adapted from Bennett *et al.*<sup>104</sup>)

#### Ni+Al = Ni+Al + 330 кал/г 5,165 г/см<sup>3</sup> + 1710 кал/см<sup>3</sup>

### Shock compression of reactive powder mixtures

- D. E. Eakins and N. N. Thadhani\* International Materials Reviews
- 2009



### Ударная сжимаемость смесей никеля и алюминия из микро- и наноразмерных порошков // Физика горения и взрыва. – 2018. – Т. 54, № 5.



Рис. 3. Ударные адиабаты смесей в координатах D-u:

1-нанодисперсная смесь, 2-микродисперсная смесь, 3-расчетная ударная адиабата смеси

Рис. 4. Ударные адиабаты смесей в координатах p-V:

1 — нанодисперсная смесь, 2 — микродисперсная смесь, 3 — расчетная ударная адиабата смеси, 4 — кривая холодного сжатия смеси



 $\textbf{P} = \rho_{00} \times \textbf{D} \times \textbf{u}$ 



Рис. 10. (а) *Р*–р-диаграмма никеля для разных *m*: сплошные линии – экспериментальные ударные адиабаты, точечные линии – расчетные адиабаты по [20], штриховые линии – расчетные изотермы по [20] (цифры у изотерм отвечают соответствующим температурам). (б) Зависимость γ(ρ) на адиабатах для разных *m* (расчет по [20])





Shock compression of reactive powder mixtures

D. E. Eakins and N. N. Thadhani\*

International Materials Reviews 2009

### Metal nanoparticles equipment appearance MIGEN











6 1.38 μm 5.3 mm 300 000 x 0 ° Immersion











# Постановка экспериментов: метание BB+4 канальный VISAR интерферометр, пороховая пушка+1 канал. VISAR

**Окна: H<sub>2</sub>O, LiF, Воздух** AI фольга 7 – 50 мкм



**nNi h = 1.6-4.5 мм** ρ<sub>00</sub> **= 4,3-4,6 г/см**<sup>3</sup> ε **= 50%** (48,5-51,5) **k = 2** (1.94-2.07) <d> = 50÷80 нм Ε ≈ 8 Дж/г (Удельная поверхностная энергия)



W = 0.837 km/s, h = 2.06 mm

W = 5.3 km/s, h = 2.41 mm





Mie-Gruneisen EOS  $\gamma$  = const and  $\gamma/V = const = (\gamma_0/V_0) (\gamma_0 = 2)$ Isotherm - Birch-Murnaghan expression with free coefficients K<sub>0</sub> and K<sub>1</sub> (185 GPa and 5)

$$P_{H}(V, E_{T}) = P_{T}(V) + \frac{\gamma}{V} (E_{H}(V) - E_{T}(V))$$
$$P_{T} = \frac{3}{2} K_{0} \left( \left(\frac{V}{V_{0}}\right)^{-\frac{7}{3}} - \left(\frac{V}{V_{0}}\right)^{-\frac{5}{3}} \right) \left[ 1 - \frac{3}{4} (4 - K_{1}) \left( \left(\frac{V}{V_{0}}\right)^{-\frac{2}{3}} - 1 \right) \right]$$





1-2 melting [Boccato S. et al. // J. Geoph. Res. 2017]





Скорость предвестника - 2.3 - 2.5 km/s



Зависимость предела упругости Гюгонио от толщины образца





Времена нарастания на фронте волн уплотнения, распространяющихся в наноразмерном Ni оказались сравнимы с временами, измеренными для микронных порошков. Это приводит к тому, что толщины волн уплотнения в случае нано Ni пропорциональны нескольким сотням средних размеров частиц, а не среднему размеру частиц, что характерно для различных микропорошков. Предел упругости Гюгонио в нано Ni снижается с 0,45 до 0,2 ГПа с увеличением толщины образцов (от 2 до 5 мм), что свидетельствует о достаточно быстром затухании упругого предвестника.

### Заключение

- Ударная адиабата наноразмерного никеля в пределах ошибок эксперимента совпадает с ударной адиабатой микронного никеля.
  Ударное сжатие до 61 ГПа не имеет особенностей, хорошо описывается моделью Зельдовича для пористой среды и может быть рассчитано с помощью уравнения состояния Ми-Грюнайзена.
- Изоэнтропы разгрузки имеют существенные особенности. При разгрузке из состояний с давлением до 20 ГПа расчетные изэнтропы расширения описывают данные в пределах погрешности эксперимента. Однако в среднем диапазоне при расширении из состояний с давлением 20–35 ГПа изэнтропы на диаграммах давление-массовая скорость существенно отклоняются в сторону массовых скоростей на 300–400 м/с выше, чем в случае «зеркальной симметрии».
- Профили ударных волн при давлениях ниже 8 ГПа имеют сложную многоступенчатую структуру, в которой выделяются волна-предвестник и волна уплотнения. Толщины волн уплотнения в случае нано Ni пропорциональны нескольким сотням средних размеров частиц.