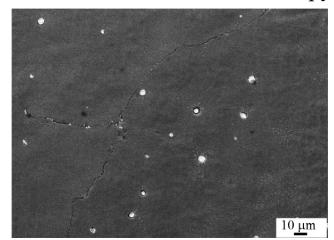
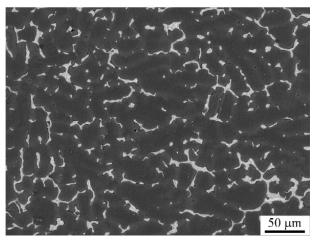
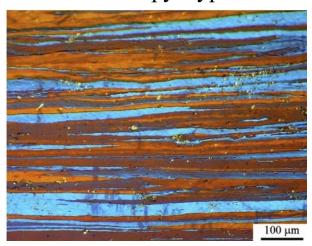
ДИНАМИЧЕСКИЕ СВОЙСТВА АЛЮМИНИЕВОГО СПЛАВА АЛТЭК

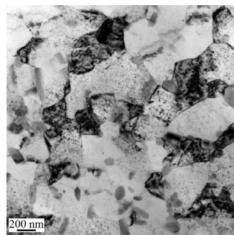
Дмитрий Юрьевич Распосиенко 1 , А. Н. Петрова 1 , Г.В. Гаркушин 2 , А.С. Савиных 2 , С.В. Разоренов 2

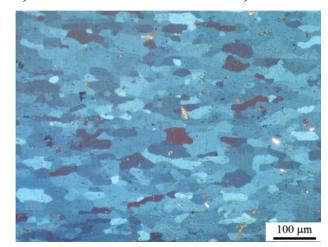
¹Институт физики металлов УрО РАН, г. Екатеринбург


²Федеральный Исследовательский Центр Проблем Химической Физики и Медицинской Химии РАН, г. Черноголовка



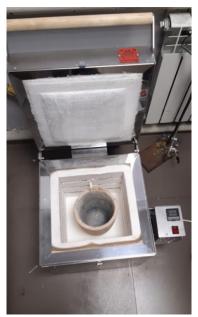

1. 5 Cu-1 Mn


Структура литых сплавов Al-Cu-Mn 7 Cu-1 Mn



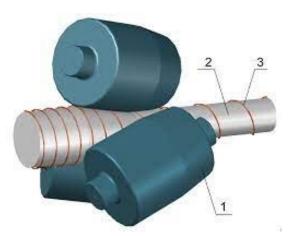
Структура холоднокатанных листов толщиной 0,5 мм и отжига 540 °C, 3 ч

Optimization of phase composition of Al–Cu–Mn–Zr–Sc alloys for rolled products without requirement for solution treatment and quenching / Belov N.A., Alabin A.N., Matveeva I.A. // J. Alloys Compd. -2014 - V. 583. - P. 206-213.


Химический состав экспериментального сплава АЛТЭК:

	Cu	Mn	Zr	Cr	Fe	Si	Al
Расчет.	1,6	1,8	0,40	0,15	_	_	Основа
Факт.	1,53	1,66	0,38	0,15	0,15	<0,01	Основа

Заливка расплава производилась при 900 °C в графитовую изложницу с внутренней полостью диаметром 40 мм и высотой 200 мм.


Внешний вид литых слитков

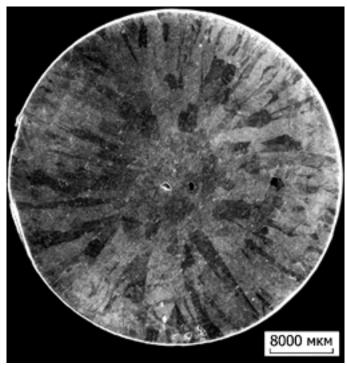
Электропечь сопротивления

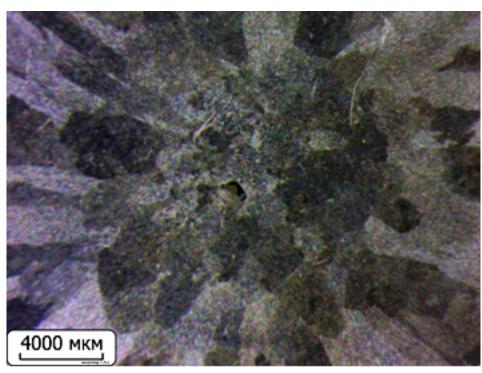
1 - валок; 2 - заготовка; 3 - траектория движения металла на поверхности заготовки

РСП слитка в два прохода по схеме Ø40 \rightarrow Ø31 \rightarrow Ø24 мм при 280 и 350 °C без промежуточных отжигов. Коэффициент вытяжки составил μ =3.4.

Внешний вид полученного прутка

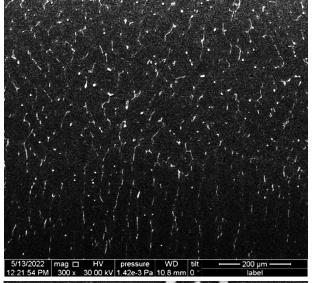
Стан РСП 14-40


Вид на клеть стана


Вид на мотор-редуктор и шпиндели

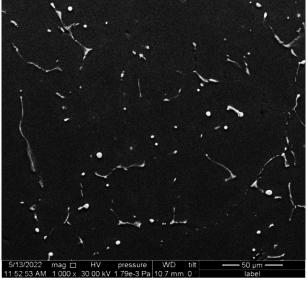
Микроструктура литого сплава

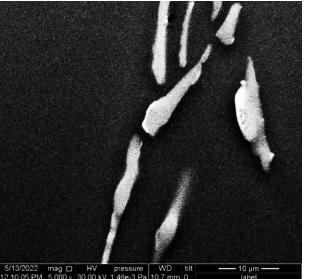
Общий вид макроструктуры слитка

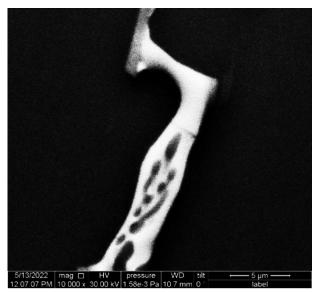

Изображение микроструктуры центральной части слитка

Центральная область - равноосные дисперсные зерна диаметром 2,3 мкм

Периферия - крупные вытянутые в радиальном направлении зерна размерами 4-6 мм

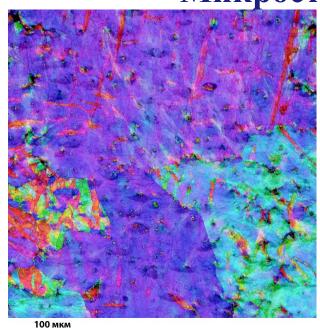


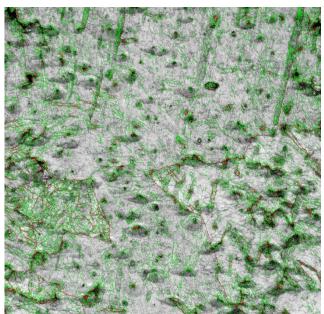




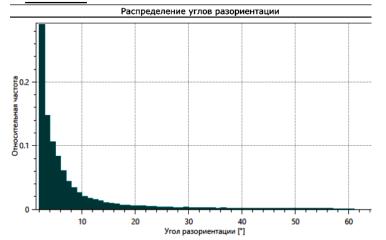
Микроструктура зоны направленной кристаллизации

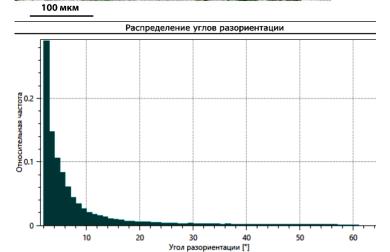
Микроструктуры центральной части слитка



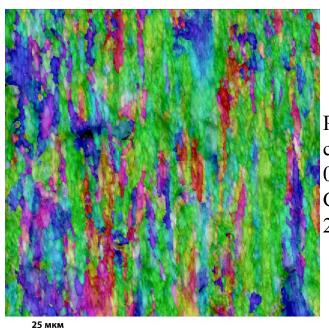


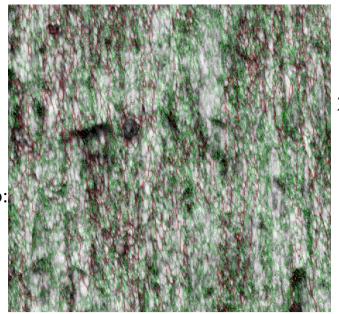
Микроструктура сплава после РСП

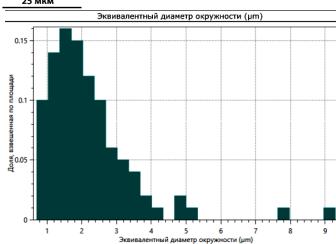



Размер зеренсубзерен: 1,1 – 450 мкм; Средний размер: 2,5 мкм

 $2-15\,^{\circ}-86~\%$

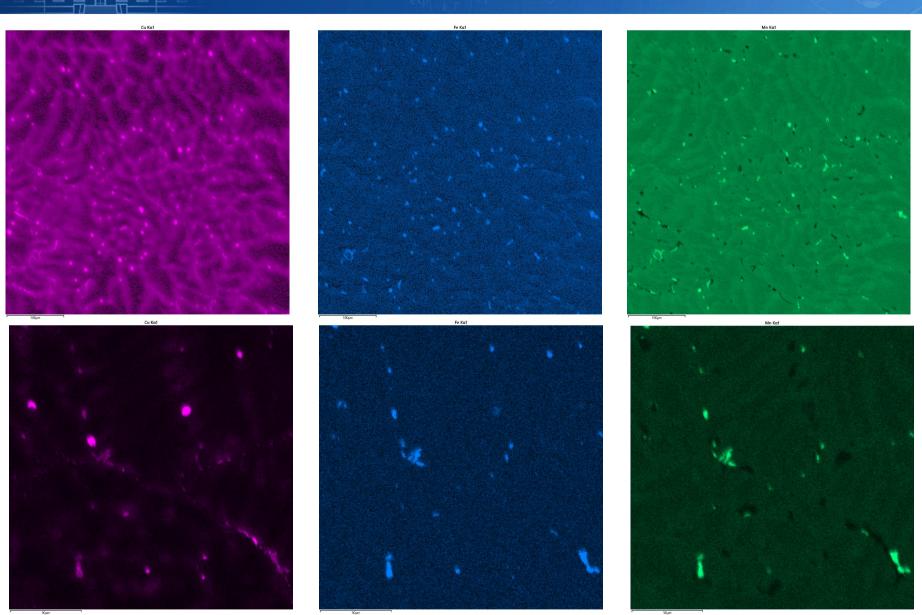

 $> 15 \, ^{\circ} - 14 \, \%$





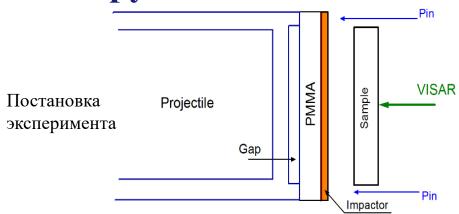

Размер зеренсубзерен: 0,7 – 15 мкм; Средний размер: 2 мкм

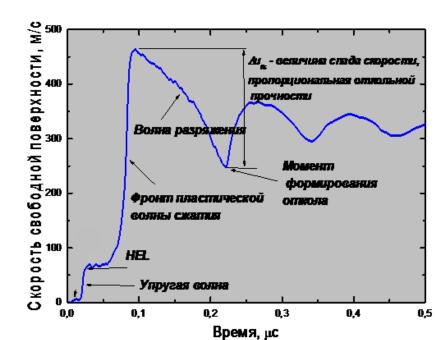
 $2-15\,^{\circ}-70~\%$


 $> 15 \circ -30 \%$

Ударно-волновое нагружение

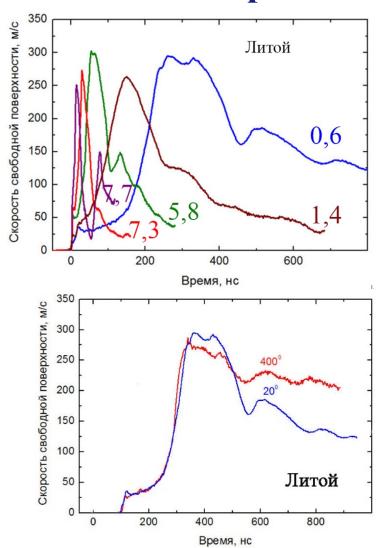
Газовая пушка

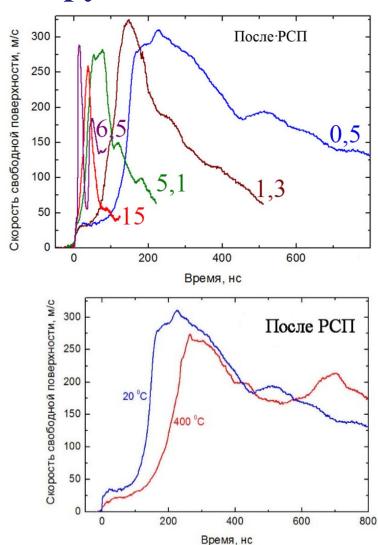

$$\sigma_{HEL} = \frac{\rho_0 c_L U_{fs}^{HEL}}{2}$$


Динамический предел текучести:

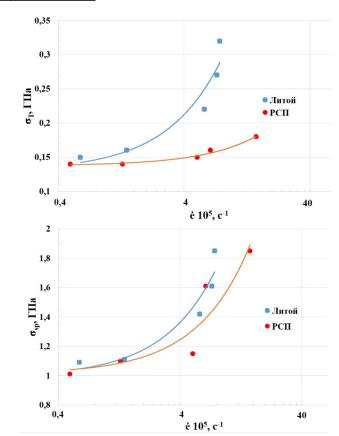
$$Y = \sigma_{HEL} \frac{1 - 2\mu}{1 - \mu}$$

Откольная прочность:

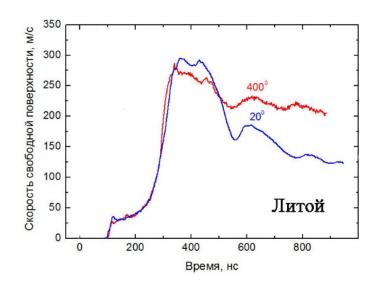

$$\sigma_{sp} = \frac{\rho_0 c_B (\Delta U_{fs} + \delta U)}{2}$$

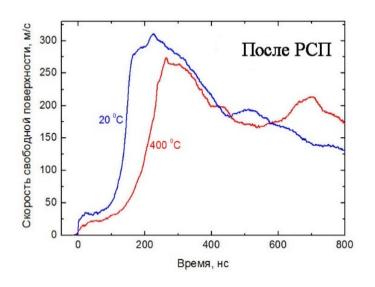


Ударно-волновое нагружение



Статические свойства


Состояние	НВ	HV	σ _{0.2} , МПа	σ _в , МПа	δ,	Размер зерна, мкм
Литое	49	67	57	166	22	3000
После РСП 350° С	58	80	83	216	25	2


Динамические свойства

Состоян ие	h _{sp} , mm	T, °C	σ _{HEL} , ΓΠα	σ _т , ГПа	σ _{sp} , ГПа	h _{sp} ,м м
Литой	4.00	20	0.31	0,15	1.09	0.7
	2.16	20	0.34	0,16	1.11	0.42
	0.83	20	0.46	0,22	1.42	0.18
	0.49	20	0.55	0,27	1.61	0.13
	0.18	20	0.66	0,32	1.85	0.1
	4.01	400	0.24	0,12	0.45	0.6
	0.76	400	0.46	0,22	0.87	
После РСП 350° С	4.00	20	0.28	0,14	1.01	0.77
	1.99	20	0.28	0,14	1.10	0.49
	0.70	20	0.3	0,15	1.15	0.18
	0.41	20	0.33	0,16	1.61	0.09
	0.13	20	0.38	0,18	1.85	0.04
	3.92	400	0.15	0,07	0.49	0.53

	Лито	ой	После РСП 350 °C		
	$σ_T$, ΓΠ a	$\sigma_{\rm sp}$, $\Gamma\Pi a$	σ_{T} , ГПа	σ _{sp} , ΓΠa	
Температура				1	
20 °C	0.15	1.09	0.14	1.01	
400 °C	0,12	0.45	0.07	0.49	
$\dot{\varepsilon}$, 10 ⁵ c ⁻¹	0.6-0.8				

Заключение

- Выявлено, что структура литого сплава неоднородна и представлена равноосными дисперсными зернами диаметром около 2 мм в центральной части слитка и более крупными вытянутыми в радиальном направлении зернами размерами 4-6 мм по периферии. По границам зерен и дендритных ячеек образуются интерметаллидные фазы Al₂Cu и Al₆(Fe,Mn).
- Показано, что в результате РСП реализуется значительная фрагментация зеренносубзеренной структуры сплава, и формируется преимущественно полосовая структура, состоящая из субзерен диаметром от 1 мкм.
- Обнаружено, что, несмотря на значительное измельчение зеренной структуры, деформация сплава приводит к уменьшению динамического предела упругости при сохранении откольной прочности на уровне литого состояния.
- Установлено, что рост температуры испытаний образцов до 400 °C способствует значительному снижению откольной прочности и динамического предела упругости сплава.