ДИНАМИЧЕСКИЕ СВОЙСТВА МЕДИ И СПЛАВОВ МЕДИ ПРИ УДАРНО-ВОЛНОВОМ НАГРУЖЕНИИ

И.В. Хомская¹, Д.Н. Абдуллина¹, С.В. Разоренов², Е.В. Шорохов³

¹Институт физики металлов имени М.Н. Михеева Уральского отделения РАН, Екатеринбург

Федеральный исследовательский центр проблем химической физики и медицинской химии РАН, Черноголовка

³ Российский Федеральный ядерный центр– ВНИИ технической физики, имени академика Е.И. Забабахина, Снежинск

Внешний вид и микроструктура образца меди после ДКУП, n=4

Анализ структуры СМК+НК меди, полученной ДКУП

Карты распределения зерен в СМК + НК меди по кристаллографической ориентировке, размерам и типу границ.

_{α,°} Гистограмма распределения зерен по типу границ

30 40 50 60

10 20

Динамические свойства меди при испытании на ударное сжатие(Р= 5.6-6.8 ГПа, V деф=10⁵ с⁻¹)

•Ударное сжатие образцов толщиной ~ 2 мм в виде дисков диаметром 16 мм и пластин, размером 12х12 мм осуществляли путем прямого соударения алюминиевого ударника толщиной ~ 0.4 мм, разогнанного с помощью специального взрывного устройства до скорости 620±30 м/с. Р тах ударного сжатия образцов - 5,6-6,9 ГПа, скорость деформирования в разгрузочной части волны сжатия перед откольным разрушением -(0,9-2,0)·10⁵ с⁻¹

•Регистрацию профилей скорости свободной поверхности Ufs(t) осуществляли при помощи лазерного Доплеровского измерителя скорости VISAR, имеющего временное разрешение ~ 1 нс и пространственное ~0.1 мм²

Профили скорости свободной поверхности образцов меди

Волновой профиль исходного КК образца; стрелками показаны: HEL – упругий предвестник волны сжатия; А – фронт пластической волны сжатия; Б – волна разряжения; В – момент формирования откола; Δufs – величина спада скорости от максимума до минимума в момент откола;

Сравнение волновых профилей образцов с различными кристаллическими структурами:

1–КК структура (100 мкм) σHEL=0,1; Y =0,05; σsp=1,86 ГПа 2 –СМК (0,5-1,0 мкм) σHEL=0,62; Y =0,30; σsp=1,79 ГПа 3 – СМК+НК (0,05-0,40 мкм) σHEL=0,71; Y =0,30; σsp=2,51 ГПа

Сразу за фронтом упругой волны наблюдается плавный рост скорости свободной поверхности до резкого скачка в пластической волне сжатия (**A**) вследствие упрочнения материала и отсутствия релаксации напряжений за фронтом упругого предвестника. После выхода на поверхность пластической волны сжатия регистрируются следующая за ней волна разрежения (**b**). При достижении растягивающими напряжениями критической величины происходит откольное разрушение образца (начало формирования откола обозначено **стрелкой B**) и в этот момент формируется слабая волна сжатия – откольный импульс, многократные переотражения которого в откольной пластине приводят к дальнейшим осцилляциям скорости на волновых профилях.

Влияние дисперсности кристаллической структуры на механические свойства меди

Исходная КК структура

СМК+НК

0.5 0.7 0.9 1.1

d, мкм

50-400 нм

Гистограммы распределения зерен по типу границ

испытания на одноосное растяжение (V деф=10⁻² с⁻¹)

Структура и размер зерна	<i>σ_в,</i> МПа	<i>σ_{0,2},</i> МПа	δ, %
КК 100 мкм	312	304	37
СМК 0,5-1,0 мкм	396	362	22
СМК+НК 50-400 нм	440	414	19

испытания на ударное сжатие (Р= 5.6-6.8 ГПа, V деф=10⁵ с⁻¹)

Структура, размер зерна, обработка	σ _{неL} , ΓΠа	<i>Ү</i> , ГПа	σ _{sp} , ГПа
КК 100 мкм (отжиг 450°С)	<0.10	<0.05	1.86
СМК 0.5-1.0 мкм (ДКУП, n=1)	0.62	0.30	1.79
СМК+НК 0.05-0.40 мкм (ДКУП, n=4)	0.69	0.30	2.51

Динамические свойства СМК и НК меди выше ее КК аналога: так оНЕЦи Ув 6 раз, овр в 1.4 раза. Это связано с формированием в меди при ДКУП структуры, состоящей из сильно разориентированных зерен размерами от 50 до 400 нм с преимущественно неравновесными большеугловыми границами, что способствует замедлению роста микротрещин, т.е. затягиванию процесса высокоскоростного разрушения.

Упрочняющий эффект СМК и СМК+НК меди сохраняется в широком интервале скоростей деформации • 10⁻² до 10⁵ с⁻¹.

Результаты EBSD анализа сплавов Cu-0.1%Cr и Cu-0,03%Zr с CMK структурой, полученной методом ДКУП

Карты распределения зерен по кристаллографической ориентировке, типу границ и размерам

Гистограммы распределения зерен по размерам и типу границ

Волновые профили меди и сплавов

Показано, что ДКУП, n=1 меди, приводящее к измельчению зерна от 100 до 0.5 мкм, в 5.7 раз увеличивает динамический предел упругости (σне∟) и динамический предел текучести (Y) меди. Формирование СМК+НК структуры (50-400 нм) при ДКУП, n=4, увеличивает динамическую (откольную) прочность меди в 1.4 раза, по сравнению с исходным КК состоянием В сплавах Cu-0.03%Zr и Cu-0.1%Cr ДКУП, n=1 увеличивает оне∟ и Y в1.9-2.8 раза, соответственно. Измельчение зерна до СМК состояния (до 0.2-0.5 мкм) при ДКУП, n=3 увеличивает динамические свойства сплава Cu-0,1%Cr в 1.5-3.7 раз по сравнению с исходным КК состоянием. Влияние легирования Cr и Zr на динамические свойства меди

Профили скорости свободной поверхности образцов с различными кристаллическими структурами

Динамические свойства сплавов в исходном КК состоянии и после ДКУП

Материа л	Структура, размер зерна, обработка	σ _{неL} , ΓΠα	<i>Ү</i> , ГПа	<i>σ_{sp},</i> ГПа
	КК 200-400 мкм (закалка 1000°С)	0.22	0.11	3.22
Cu-0.03Zr	МК 1-5 мкм (ДКУП, n=1)	0.41	0.18	2.90
	СМК 0.2-0.5 мкм (ДКУП, n=3)	0.42	0.20	2.31
КК 200-400 мкм (закалка 1000°С)		0.19	0.12	1.90
Cu-0.1Cr	МК 1-5 мкм (ДКУП, n=1)	0.54	0.21	2.40
	СМК 0.2-0.5 мкм (ДКУП, n=3)	0.70	0.31	2.76

ИПХФ

PAH

Определено, что ДКУП сплавов, приводящее к измельчению кристаллитов от 200–400 до 1–5 и (0.2-0.5) мкм увеличивает σ_{HEL} и Y в 1.9–3.7 раза, по сравнению с исходным КК состоянием. Диспергирование структуры сплава Cu–0.1Cr до СМК состояния увеличивает в 1.5 раза откольную прочность, по сравнению с исходным КК состоянием. Повышенный уровень динамических свойств сплавов, по сравнению с медью, связан с дополнительным упрочнением, обусловленным выделением наночастиц Cr и Cu₅Zr на границах и внутри зерен в процессе ДКУП

Эволюция структуры и изменение микротвердости сплава Cu-0.03%Zr после ДКУП и последующих отжигов

ДКУП, n=3

0

10 20

30 40 50

α. •

0.10 liad 0.05

ДКУП+ 450°С

ДКУП +700°С

Изменение микротвердости сплава Сu-0.03%Zr с СМК структурой, полученной методом ДКУП, от температуры отжига. 1 – ДКУП, n=1 2 – ДКУП, n=3

Отжиги при 400 (450°С) повышают микротвердость сплава с СМК структурой, полученной методом ДКУП, что связано с процессами распада пересыщенного α–твердого раствора меди, сопровождающимся выделением наноразмерных частиц Сu₅Zr

Увеличение температуры отжига до 500-600°С приводит к снижению микротвердости, что обусловлено развитием процесса рекристаллизации

Гистограммы распределения зерен по типу границ

α.°

30 40 50 60

10 20

Доля

Влияние высокоскоростного ДКУП и последующего отжига на волновые профили и динамические свойства сплава Cu-0.03%Zr

Установлено, что однократное ДКУП сплавов Cu–0.1%Cr и Cu-0.03%Zr, приводящее к измельчению кристаллитов от 300 до 1-5 мкм, увеличивает характеристики упруго-пластического перехода в 1.8-2.8 раза.

Режим обработки, тип структуры	Рmax, ГПа	Ufs max, м/с	UHEL м/с	∆Ufs, м/с	σ _{HEL} , ΓΠa	Ү, ГПа	σ _{sP} , ΓΠа	hsp, MM
Исходное КК состояние	6.98	373	10	167	0.22	0.11	3.22	0.30
ДКУП, n=1, МК	6.18	333	20	157	0.41	0.18	2.90	0.35
ДКУП, n=1, + отжиг 450°С, 1ч	5.30	289	22	171	0.46	0.20	3.31	0.3
ДКУП, n=3, СМК	6.20	334	20	122	0.42	0.20	2.31	0.34
ДКУП, n=3, + отжиг 450°С, 1ч	5.20	281	39	132	0.81	0.39	2.54	0.28

Ртах –тах давление ударного сжатия; Ufs max – тах скорость свободной поверхности; UHEL – скорость поверхности на фронте упругого предвестника; ΔUfs – величина спада скорости от тах до первого min в момент откола; σHEL – динамический предел упругости; Y – динамический предел текучести σ_{sp}– динамическая (откольная) прочность; hsp– толщина откольной пластины

Эволюция структуры и изменение микротвердости сплава Cu-0.1%Cr после высокоскоростного ДКУП и последующих отжигов

ДКУП, n=3 ДКУП+ 450°С

ДКУП +700°С

Изменение микротвердости сплава Cu-0.1%Cr с CMK структурой, полученной методом ДКУП, от температуры отжига. 1 – ДКУП, n=1; 2 – ДКУП, n=3

Отжиги при 300 - 500°С несколько понижают микротвердость сплава с СМК структурой, полученной методом ДКУП, что связано с действием конкурирующих процессов распада пересыщенного α–твердого раствора меди, сопровождающимся выделением наноразмерных частицнаночастиц Сг и рекристаллизации.

Увеличение температуры отжига до 550-700°С приводит к снижению микротвердости, что обусловлено развитием процесса рекристаллизации

Гистограммы распределения зерен по типу границ

α, °

Влияние высокоскоростного ДКУП и последующего отжига волновые профили и динамические свойства сплава Cu-0.1%Cr

Диспергирование структуры при ДКУП до 0.2–0.5 мкм увеличивает динамический предел упругости, динамический предел текучести и динамическую (откольную) прочность сплава Cu–0.1%Cr в 1.5-4.0 раза по сравнению с исходным КК состоянием.

Режим обработки, тип структуры	Рmax, ГПа	Ufs max, м/с	UHEL м/с	∆Ufs, м/с	σ _{HEL} , ΓΠa	Ү, ГПа	σ _{sP} , ΓΠa	hsp, MM
Исходное КК состояние	5.73	310	8.7	167	0.19	0.12	1.90	0.37
ДКУП, n=1, МК	6.52	350	26.4	157	0.54	0.21	2.40	0.33
ДКУП, n=1, + отжиг 400°С, 1ч	6.40	346	21	171	0.44	0.17	2.82	0.28
ДКУП, n=3, СМК	6.20	334	33.5	122	0.70	0.31	2.76	0.34
ДКУП, n=3, + отжиг 400°С, 1ч	5.80	315	2/5	132	0.10	0.04	2.57	0.28

Ртах –тах давление ударного сжатия; Ufs тах – тах скорость свободной поверхности; UHEL – скорость поверхности на фронте упругого предвестника; ΔUfs – величина спада скорости от тах до первого min в момент откола; σHEL – динамический предел упругости; Y – динамический предел текучести σ_{sp}– динамическая (откольная) прочность; hsp– толщина откольной пластины

Эволюция структуры медных композитов с графеном, полученных синтезом «in-sity» под слоем солевого расплава в Институте высокотемпературной электрохимии УрО РАН

99,9% Cu

0.6 0.5 0.5 0.4 0.3 0.2 0.1 0.3 ос.2 KION 0.1 10 20 30 40 50 0 30 40 50 10 20 α, ° a.º

Cu-0.02%Gn (сплав 1)

Cu-0.02%Gn (сплав 2)

Гистограммы распределения зерен по типу границ

Динамические свойства меди и медных композитов с графеном при испытании на ударное сжатие

Волновые профили образцов:

- 1 99.9%Си в исходном КК состоянии
 - 2 99.9%Си после ДКУП, n=1
 - 5 Cu-0.02%Gn в исх. КК состоянии
 - 6 Cu-0.02%Gn после ДКУП, n=1

Режим обработки	Н∨, МПа	Рmax, ГПа	Ufs max, M/C	UHEL M/C	∆Ufs, м/с	σ _{HEL} , ΓΠα	Ү, ГПа	σ _{SP} , ΓΠа	hsp, мм
99.9%Си исходное КК	630	6.34	341	3	72	0.06	0.03	1.39	0.19
99.9%Cu ДКУП, n=1	1100	5.79	313	16	58	0.33	0.17	1.13	0.26
Cu-0.02%Gn (сплав 2) КК	700	6.2	336	5	76	0.1	0.05	1.47	0.16
Cu-0.02%Gn (2) ДКУП, n=1	1400	5.7	309	20	113	0.4	0.21	2.26	0.3

Hv – микротвердость; Pmax –max давление ударного сжатия; Ufs max – max скорость свободной поверхности; UHEL – скорость поверхности на фронте упругого предвестника; ΔUfs – величина спада скорости от max до первого min в момент откола; σHEL – динамический предел упругости; Y – динамический предел текучести σ_{sp}– динамическая (откольная) прочность; hsp– толщина откольной пластины

выводы

Изучены динамические свойства меди с СМК и СМК+НК структурой и сплавов Cu–0.03%Zr и Cu–0.1%Cr с СМК структурой, полученной ДКУП, в условиях ударного сжатия при субмикросекундных длительностях нагрузки. Установлено, что медь с СМК и СМК+НК структурами, при скорости деформирования (0.9–2.0)·10⁵ с⁻¹ демонстрирует увеличение динамического предела упругости и динамического предела текучести в 6 раз, по сравнению с исходным КК состоянием. Это обусловлено специфическими неравновесными состояниями, сформированными в меди при ДКУП. Определено, что дальнейшее диспергирование структуры меди до СМК+НК состояния увеличивает в 1.4 раза откольную прочность, по сравнению с КК состоянием. Это связано с формированием в меди при четырехкратном ДКУП структуры, состоящей из сильно разориентированных зерен размерами от 0.05 до 0.40 мкм с преимущественно неравновесными большеугловыми границами, что способствует замедлению роста микротрещин, т.е. затягиванию процесса высокоскоростного разрушения.

Установлено, что однократное ДКУП сплавов Cu–0.1%Cr и Cu-0.03%Zr, приводящее к измельчению кристаллитов от 300 до 1-5 мкм, увеличивает характеристики упругопластического перехода в 1.8-2.8 раза, по сравнению с исходным КК состоянием. Дальнейшее диспергирование структуры до 0.5 мкм при трехкратном ДКУП до увеличивает динамический предел упругости, динамический предел текучести и динамическую (откольную) прочность сплава Cu–0.1%Cr в 1.5-4.0 раза по сравнению с исходным КК состоянием.

Увеличение откольной прочности сплавов в 1.1-1.2 раза по сравнению с медью, связано с дополнительным упрочнением, обусловленным выделением наночастиц Cr и Cu₅Zr на границах и внутри зерен в процессе ДКУП. Последующие отжиги при 400-450C приводят к дополнительному увеличению динамических свойств в 1.2-1.9 раз.

Показано, что ДКУП композита на основе меди с микродобавкой графена приводит к увеличению динамического предела упругости и динамического предела текучести в 4.0-5.6 раз и откольной прочности в 1.5-1.8 раз, по сравнению с исходным КК состоянием.

Институт физики металлов им. М.Н. Михеева УрО РАН, г. Екатеринбург

Спасибо за внимание!