Лазер-плазменный источник тормозного излучения для радиографии плотных объектов

<u>Флегентов В.А.</u>, Сафронов К.В., Шамаева Н.Н., Горохов С.А., Борисов Е.С., Гаврилов Д.С., Титаренко Н.Ю., Потапов А.В.

Схема измерений выхода и углового распределения СЖРИ (*E*_v>0,1 МэВ)

Измерение спектров СЖРИ (E_{γ} >0,1 МэВ) методом дифференциальных фильтров

 $S_i(E)$ – спектральная чувствительность *i*-го канала (детектора); T_{hot} – характерная температура спектра;

Зависимость конверсии в СЖРИ ($\phi = 45^{\circ}$) от интенсивности и толщины мишени

 $\eta_{45^\circ} \sim I_L$; зависимость от толщины мишени не прослеживается

Температура распределения квантов СЖРИ (угол измерения $\phi = 45^{\circ}$)

Liang T. et al, RPD v.175 N3 (2017)

T. Kluge et al, PRL, 107, 205003 (2011) ⁵

Зависимость конверсии в СЖРИ ($\phi = 0^{\circ}$) от интенсивности и толщины мишени

 $\eta_{0^{\circ}} \sim I_L \times exp(t[mm]/2)$; максимальный выход $Y_{max} \sim 10^{12} \text{ МэВ/ср}$

Измерение угловой направленности выхода СЖРИ под углами $\varphi = 0^\circ$ и $\varphi = 45^\circ$

Восстановление углового распределения дозы по снимку с «Монитора пучка»

W 0,5 MM W 0,5 MM W 0,5 MM W 0,5 MM W 1,5 MM E_L =2,8 Дж; E_L =16,2 Дж; E_L =35,6 Дж; E_L =32 Дж; I_L =1,2×10¹⁸ BT/см² I_L =1,5×10¹⁹ BT/см² I_L =1,5×10¹⁹ BT/см² I_L =3,4×10¹⁹ BT/см²

H dir – срез совпадает с плоскостью поляризации При $I_L > 10^{19}$ Bt/см² в плоскости поляризации наблюдаются два пика в распределении дозы симметричных относительно центральной оси.

Угловое распределение дозы в плоскости поляризации

Rosmej O. N. et al., New J. Phys. 21, 043044 (2019)

Потоки релятивистских электронов с тыльной стороны мишени

Наблюдаемые потоки релятивистских электронов были устранены при помощи Al защиты толщиной 30 мм установленной с тыльной стороны мишени. Схема экспериментов с радиографией сохранённого образца ЛГП мишени из стали

Теневые радиографические изображения стального образца

W, 0,5 мм; E_L =32,4 Дж; I_L =1,4×10¹⁹ Вт/см² W, 2 мм; *E*_{*L*}=40,4 Дж; *I*_{*L*}=2,4×10¹⁹ Вт/см²

Анализ качества радиографических изображений

$$L_D = \frac{I_{max} - I_{min}}{\sigma}$$

I_{max} и I_{min} – максимальная и минимальная яркость изображения объекта; σ – шум изображения.

Необходима оптимизация спектра РИ под диапазон просвечиваемых толщин объекта

На пикосекундной лазерной установке проведены эксперименты по генерации СЖРИ из плоских W мишеней при интенсивности ЛИ ~10¹⁹ Bт/см².

Зарегистрированы вспышки квантов тормозного излучения ($E_{\gamma} > 0,1$ МэВ) с температурами спектральных распределений от 0,3 до 1,3 МэВ.

Зависимость конверсии в тормозное излучение от интенсивности и толщины W мишени можно описать выражением $\eta_{0^{\circ}} \sim I_L \times exp(t[\text{мм}]/2)$. Достигнутая в экспериментах конверсия $\eta \sim 5 \times 10^{-3} cp^{-1}$.

Наблюдается сужение углового распределения выхода РИ при увеличении толщины мишени.

При интенсивностях $I_L>10^{19}$ Вт/см² в плоскости поляризации обнаружены два симметричных относительно центральной оси дозовых пика. Угол между пиками составляет ~(40÷60)°. Пики объясняются распределением потоков релятивистских электронов свойственных пондеромоторному механизму ускорения.

При помощи источника получены теневые радиографические снимки образца отработанной мишени легкогазовой пушки.

Спасибо за внимание!

Флегентов Владимир Александрович ЦЛФИ, РФЯЦ-ВНИИТФ, г. Снежинск dep5@vniitf.ru