

Влияние длительности импульса при релятивистском самозахвате экстремального лазерного света

М.Г. Лобок, О.Е. Вайс, В.Ю. Быченков

ФГУП «Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова» Физический институт им. П.Н. Лебедева РАН, Москва, Россия

Забабахинские научные чтения

31.05.2023

Лазерно-плазменное ускорение электронов

Кильватерное ускорение (LWFA)

- Распространение лазерного импульса (ЛИ) в низкоплотной мишени
- L < λp (ЛИ короче плазменной волны)
- моноэнергетичный пучок электронов (пКл)

[A. Pukhov, and J. Meyer-ter-Venh, Appl. Phys. B 74, 355-361 (2002)]

Прямое лазерное ускорение (DLA)

- Мишень околокритической плотности
- L > λр (длинный лазерный импульс)
- экспоненциальный спектр электронов

[A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-Venh, Phys. Plasmas 6, 2847 (1999)] 2

распределение электронной плотности

Режим релятивистского самозахвата лазерного импульса

Условие согласования радиуса лазерного пучка, безразмерной амплитуды и плотности мишени:

$$R = \alpha \frac{c\sqrt{a_0}}{\omega_p} = \frac{\alpha c}{\omega_l} \sqrt{\frac{a_0 n_c}{n_e}}$$

Дифракционная расходимость уравновешивается релятивистской нелинейностью → радиус лазерного пучка примерно сохраняется при его распространении на многие рэлеевские длины. Платообразный спектр ускоренных электронов. Высокий заряд быстрых частиц (десятки нКл).

Моделирование

3D-PIC расчет (Vsim) в режиме бегущего окна.

Параметры лазерного импульса:

линейная поляризация, $\lambda_{l} = 1$ мкм, W = 4.6 Дж.

Анализ целесообразности использования посткомпрессии лазерных импульсов (CafCa, PEARL, ИПФ РАН)

т, фс	<i>Р</i> , ТВт	<i>D_F</i> , мкм	a ₀	<i>I_p</i> , Вт/см²	n _e /n _c	П _{е,} СМ ⁻³
10	430	4	41.6	2.4x10 ²¹	0.15	1.67x10 ²⁰
40	110	4	20.8	6.0x10 ²⁰	0.13	1.45x10 ²⁰
40	110	8	10.4	1.5x10 ²⁰	0.005	5.57x10 ¹⁸

параметры, изменяемые в расчетах

Распространение лазерного импульса длительностью 10 фс распределение электронной плотности и электрического поля

x, μm

лазерного импульса в плоскости поляризации ($a_0 = 42$, $n_e = 0.15 n_c$) z, μm -5-10x, μm x, μm x, μm $\tau = 10.0$ fs, $n_e = 0.15 n_c$ у, µт шщ ,z -10 -10 -20 -20 O

x, μm

распределение электронной плотности и продольного электрического поля в плоскости поляризации (*a*₀ = 42, *n*_e=0.15*n*_c)

распределение электронной плотности и электрического поля лазерного

 $\tau = 40.0 \text{ fs}, n_e = 0.13 n_c$

$L > \lambda_p/2.$

Формирование филаментов.

Модуляции плотности на масштабах длины лазерной волны.

9

x, μm

20 10 z, μm 0 -10-20 80 100 120 200 560 160 180 520 540 x, μm x, μm x, μm 1.00 30 0.75 20 $L \sim \lambda_p / 2 \ (R \sim (a_0 / n_e)^{1/2}).$ 0.50 Формирование плазменной 10 0.25 E_x/E_{max} волны. z, μm 0.00 Модуляции плотности на -0.25 масштабах длины лазерной -10 -0.50 волны. -20 -0.75 -30 -1.00420 420 430 450 460 430 440 450 460 440

x, μm

распределение электронной плотности и электрического поля лазерного импульса в плоскости поляризации (*a*₀ = 10, *n*_e=0.005*n*_c)

Сравнение результатов для лазерных импульсов различной длительности

динамика спектров частиц при распространении лазерного импульса в мишени

характеристики электронного пучка, ускоренного плазменной полостью

параметры	<i>€_{тах,>30мэВ},</i> МэВ	< ε > _{30МэВ} >, МэВ	Q> _{30МэВ} , нКл	<i>W_{>зомэв},</i> Дж
<i>τ</i> = 10 фс, <i>D</i> _F = 4 мкм	280	151	10	1.2
τ = 40 фс, D _F = 4 мкм	160	60	4.4	0.25
τ = 40 фс, D _F = 8 мкм	420	200	1.5	0.19

Заключение

- При распространении лазерного импульса в режиме релятивистского самозахвата более короткие импульсы имеют больший коэффициент конверсии в энергию высокоэнергетичных частиц, что обусловлено возможностью использовать более плотные мишени, которые позволяют ускорить больший суммарный заряд электронов.
- При распространении лазерного импульса в низкоплотных мишенях значения характерных энергий распределений частиц оказываются выше.
- Использование более короткого импульса заданной энергии позволяет избежать как филаментации лазерного пучка (в случае плазмы околокритической плотности, т.к. L < λ_p/2), так и формирования плазменных волн (которые возникают в низкоплотных мишенях).

Спасибо за внимание

Лобок Максим Геннадьевич

mglobok@vniia.ru

31.05.2023